满分5 > 初中数学试题 >

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边...

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
manfen5.com 满分网
(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于manfen5.com 满分网?若能,求出此时∠1的度数;若不能,试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.
(1)根据矩形的性质和折叠的性质求出∠KNM,∠KMN的度数,根据三角形内角和即可求解; (2)过M点作ME⊥DN,垂足为E,通过证明NK>1,由三角形面积公式可得△MNK的面积不可能小于; (3)分情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合;情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC两种情况讨论求解. 【解析】 (1)∵四边形ABCD是矩形, ∴AM∥DN. ∴∠KNM=∠1. ∵∠1=70°, ∴∠KNM=∠KMN=∠1=70°, ∴∠MKN=40°. (2)不能. 过M点作ME⊥DN,垂足为E,则ME=AD=1. ∵∠KNM=∠KMN, ∴MK=NK, 又∵MK≥ME, ∴NK≥1. ∴△MNK的面积=NK•ME≥. ∴△MNK的面积不可能小于. (3)分两种情况: 情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合. MK=MB=x,则AM=5-x. 由勾股定理得12+(5-x)2=x2, 解得x=2.6. ∴MD=ND=2.6. S△MNK=S△MND==1.3. 情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC. MK=AK=CK=x,则DK=5-x. 同理可得MK=NK=2.6. ∵MD=1, ∴S△MNK==1.3. △MNK的面积最大值为1.3.
复制答案
考点分析:
相关试题推荐
图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点0到BC(或DE)的距离大于或等于的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是manfen5.com 满分网,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC=∠FED=149°.请通过计箅判断这个水桶提手是否合格.
(参考数据:manfen5.com 满分网≈17.72,tan73.6°≈3.40,sin75.4°≈0.97)
manfen5.com 满分网
查看答案
为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元,预计二期工程完成后每月将产生不少于1300吨污水.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?
(2)请你求出用于二期工程的污水处理设备的所有购买方案;
(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)
查看答案
如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).
(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;
(2)直接写出点(m,n)落在函数y=-manfen5.com 满分网图象上的概率.

manfen5.com 满分网 查看答案
根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):
manfen5.com 满分网
解答下列问题:
(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;
(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?
查看答案
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2
(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.