如图,在等腰梯形OABC中,CB∥OA,∠COA=60°BC=2,OA=4,且与x轴重合.
(1)直接写出点A、B、C的坐标;
(2)求经过点O、A、B的抛物线解析式,并判断点C是否在抛物线上;
(3)在抛物线的OCB段,是否存在一点P(不与O、B重合),使得四边形OABP的面积最大?若存在,求出此时P点的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式
的各种展开的情况.
(2)猜想
与|a|的大小关系是
______|a|.
(3)当1<x<2时,试化简:
.
查看答案
取一张矩形的纸,按如下操作过程折叠:
第一步:将矩形ABCD沿MN对折,如图1;第二步:把B点叠在折痕MN上,新折痕为AE,点B在MN上的对应点为B′,如图2;第三步:展开,得到图3.
(1)你认为∠BAE的度数为______;
(2)利用图3试证明(1)的结论.
查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD;
(2)求斜坡新起点A到原起点B的距离(精确到0.1米).
参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09.
查看答案
已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.
(1)求证:AB=CF;
(2)四边形ABFC是什么四边形,并说明你的理由.
查看答案
小强与小颖两位同学在学习“概率”时,做抛骰子(均匀正方体形状)试验,共随机抛了60次,出现向上点数的次数如下图所示:
(1)请补全下边的统计图.
(2)小强说:“根据试验,一次试验中出现向上点数为6的概率最大.”小颖说:“如果抛600次,则出现向上点数为3的次数正好是100次.”请判断他们说法的对错,并简要说明理由.
(3)若小强与小颖各随机抛一枚骰子,则P(出现向上点数之和为3的倍数)是多少.
查看答案