满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC. (1)求∠BAC...

如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=manfen5.com 满分网BC.
(1)求∠BAC的度数;
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;
(3)若BD=6,CD=4,求AD的长.

manfen5.com 满分网
(1)连接OB、OC,由垂径定理知E是BC的中点,而OE=BC,可判定△BOC是直角三角形,则∠BOC=90°,根据同弧所对的圆周角和圆心角的关系即可求得∠BAC的度数; (2)由折叠的性质可得到的条件是:①AG=AD=AF,②∠GAF=∠GAD+∠DAF=2∠BAC=90°,且∠G=∠F=90°;由②可判定四边形AGHF是矩形,联立①的结论可证得四边形AGHF是正方形; (3)设AD=x,由折叠的性质可得:AD=AF=x(即正方形的边长为x),BG=BD=6,CF=CD=4;进而可用x表示出BH、HC的长,即可在Rt△BHC中,由勾股定理求得AD的长. (1)【解析】 连接OB和OC; ∵OE⊥BC,∴BE=CE; ∵OE=BC,∴∠BOC=90°,∴∠BAC=45°;(2分) (2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°; 由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°, ∠BAG=∠BAD,∠CAF=∠CAD,(3分) ∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°; ∴∠GAF=∠BAG+∠CAF+∠BAC=90°; ∴四边形AFHG是正方形;(5分) (3)【解析】 由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4; 设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.(7分) 在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102; 解得,x1=12,x2=-2(不合题意,舍去); ∴AD=12. (8分)
复制答案
考点分析:
相关试题推荐
△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.
(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;
(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.
manfen5.com 满分网
查看答案
如图,已知直线manfen5.com 满分网与双曲线manfen5.com 满分网(k>0)交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网(k>0)上一点C的纵坐标为8,求△AOC的面积.

manfen5.com 满分网 查看答案
某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:
甲:将全体测试数据分成6组绘成直方图(如图);
乙:跳绳次数不少于105次的同学占96%;
丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;
丁:第②、③、④组的频数之比为4:17:15.
根据这四名同学提供的材料,请解答如下问题:
(1)这次跳绳测试共抽取多少名学生?各组有多少人?
(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?
(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.

manfen5.com 满分网 查看答案
如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24,manfen5.com 满分网≈2.45)

manfen5.com 满分网 查看答案
若不等式组manfen5.com 满分网整数解是关于x的方程2x-4=ax的根,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.