满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=3...

如图1,在平面直角坐标系中,已知点A(0,4manfen5.com 满分网),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒manfen5.com 满分网个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求manfen5.com 满分网出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(1)先在直角三角形AOB中,根据∠ABO的度数和OA的长,求出OB的长,即可得出B点的坐标,然后用待定系数法即可求出直线AB的解析式. (2)求等边三角形的边长就是求出PM的长,可在直角三角形PMB中,用t表示出BP的长,然后根据∠ABO的度数,求出PM的长. 当M、O重合时,可在直角三角形AOP中,根据OA的长求出AP的长,然后根据P点的速度即可求出t的值. (3)本题要分情况进行讨论: ①当N在D点左侧且E在PM右侧或在PM上时,即当0≤t≤1时,重合部分是直角梯形EGNO. ②当N在D点左侧且E在PM左侧时,即当1<t<2时,此时重复部分为五边形,(如图3)其面积可用△PMN的面积-△PIG的面积-△OMF的面积来求得.(也可用梯形ONGE的面积-三角形FEI的面积来求). ③当N、D重合时,即t=2时,此时M、O也重合,此时重合部分为等腰梯形. 根据上述三种情况,可以得出三种不同的关于重合部分面积与t的函数关系式,进而可根据函数的性质和各自的自变量的取值范围求出对应的S的最大值. 【解析】 (1)由OA=4,∠ABO=30°,得到OB=12, ∴B(12,0),设直线AB解析式为y=kx+b, 把A和B坐标代入得:, 解得:, 则直线AB的解析式为:y=-x+4. (2)∵∠AOB=90°,∠ABO=30°, ∴AB=2OA=8, ∵AP=t, ∴BP=AB-AP=8t, ∵△PMN是等边三角形, ∴∠MPB=90°, ∵tan∠PBM=, ∴PM=(8-t)×=8-t. 如图1,过P分别作PQ⊥y轴于Q,PS⊥x轴于S, 可求得AQ=AP=t,PS=QO=4-t, ∴PM=(4-)÷=8-t, 当点M与点O重合时, ∵∠BAO=60°, ∴AO=2AP. ∴4=2t, ∴t=2. (3)①当0≤t≤1时,见图2. 设PN交EC于点G,重叠部分为直角梯形EONG,作GH⊥OB于H. ∵∠GNH=60°,, ∴HN=2, ∵PM=8-t, ∴BM=16-2t, ∵OB=12, ∴ON=(8-t)-(16-2t-12)=4+t, ∴OH=ON-HN=4+t-2=2+t=EG, ∴S=(2+t+4+t)×2=2t+6. ∵S随t的增大而增大, ∴当t=1时,Smax=8. ②当1<t<2时,见图3. 设PM交EC于点I,交EO于点F,PN交EC于点G,重叠部分为五边形OFIGN. 作GH⊥OB于H, ∵FO=4-2t, ∴EF=2-(4-2t)=2t-2, ∴EI=2t-2. ∴S=S梯形ONGE-S△FEI=2t+6-(2t-2)(2t-2)=-2t2+6t+4 由题意可得MO=4-2t,OF=(4-2t)×,PC=4-t,PI=4-t, 再计算S△FMO=(4-2t)2× S△PMN=(8-t)2,S△PIG=(4-t)2, ∴S=S△PMN-S△PIG-S△FMO=(8-t)2-(4-t)2-(4-2t)2× =-2t2+6t+4 ∵-2<0, ∴当时,S有最大值,Smax=. ③当t=2时,MP=MN=6,即N与D重合, 设PM交EC于点I,PD交EC于点G,重叠部 分为等腰梯形IMNG,见图4.S=×62-×22=8, 综上所述:当0≤t≤1时,S=2t+6; 当1<t<2时,S=-2t2+6t+4; 当t=2时,S=8. ∵, ∴S的最大值是.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=manfen5.com 满分网.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;
(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案
铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
查看答案
在不透明的袋中有大小、形状和质地等完全相同的小球,它们分别标有数字-1、-2、1、2.从袋中任意摸出一小球(不放回),将袋中的小球搅匀后,再从袋中摸出另一个小球.
(1)请你表示摸出小球上的数字可能出现的所有结果;
(2)若规定:如果摸出的两个小球上的数字都是方程x2-3x+2=0的根,则小明赢.如果摸出的两个小球上的数字都不是方程
x2-3x+2=0的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?请说明理由.
查看答案
(1)如图1,在△ABC中,D为AB上一点,DE∥BC交AC于点E,若AD:DB=2:3,BC=10,求DE的长.
(2)如图2,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,求线段AB的长.
manfen5.com 满分网
查看答案
(1)解方程:manfen5.com 满分网=2
(2)解不等式组manfen5.com 满分网,并把解集在数轴上表示出来.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.