满分5 > 初中数学试题 >

如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B...

manfen5.com 满分网如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
(1)由直径AB的长,求出半径OA及OC的长,再由AC的长,得到三角形OAC三边相等,可得此三角形为等边三角形,根据等边三角形的性质得到∠AOC=60°,再根据同弧所对的圆心角等于所对圆周角的2倍,即可得出∠AEC的度数; (2)由直线l与圆O相切,根据切线的性质得到OC与直线l垂直,又BD与直线l垂直,根据在同一平面内,垂直于同一条直线的两直线平行得到BE与OC平行,根据两直线平行同位角相等,可得出∠B=∠AOC=60°,再由AB为圆O的直径,根据直径所对的圆周角为直角,可得出∠AED为直角,用∠AED-∠AEC求出∠DEC=60°,可得出一对同位角相等,根据同位角相等两直线平行,可得出EC与OB平行,根据两组对边平行的四边形为平行四边形可得出四边形OBEC为平行四边形,再由半径OC=OB,根据邻边相等的平行四边形为菱形可得出OBEC为菱形,得证. 【解析】 (1)∵OA=OC==2,AC=2, ∴OA=OC=AC, ∴△OAC为等边三角形,(1分) ∴∠AOC=60°,(2分) ∵圆周角∠AEC与圆心角∠AOC都对弧, ∴∠AEC=∠AOC=30°;(3分) (2)∵直线l切⊙O于C, ∴OC⊥CD,(4分) 又BD⊥CD, ∴OC∥BD,(5分) ∴∠B=∠AOC=60°, ∵AB为⊙O直径, ∴∠AEB=90°,又∠AEC=30°, ∴∠DEC=90°-∠AEC=60°, ∴∠B=∠DEC, ∴CE∥OB,(7分) ∴四边形OBEC为平行四边形,(8分) 又OB=OC, ∴四边形OBEC为菱形.(9分)
复制答案
考点分析:
相关试题推荐
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):
求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?
(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围;
(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?

manfen5.com 满分网 查看答案
化简:manfen5.com 满分网
查看答案
将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在变AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若FB′∥AB,那么BF的长度是   
manfen5.com 满分网 查看答案
计算7的正整数次幂:71=7,72=49,73=343,74=2401,75=16807,76=117649,77=823543,78=5764801…归纳各计算结果中的个位数字规律,可得72009的个位数字为    查看答案
如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:    ,使得加上这个条件后能够推出AD∥BC且AB=CD.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.