满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交...

如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据一元二次方程解法得出A,B两点的坐标,再利用交点式求出二次函数解析式; (2)首先判定△MNA∽△BCA.得出,进而得出函数的最值; (3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案. 【解析】 (1)∵x2-4x-12=0, ∴x1=-2,x2=6. ∴A(-2,0),B(6,0), 又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x-6), 将点C的坐标代入,求得, ∴抛物线的解析式为; (2)设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)). ∵点A的坐标为(-2,0),点B的坐标为(6,0), ∴AB=8,AM=m+2, ∵MN∥BC,∴△MNA∽△BCA. ∴, ∴, ∴, ∴, =, =. ∴当m=2时,S△CMN有最大值4. 此时,点M的坐标为(2,0); (3)∵点D(4,k)在抛物线上, ∴当x=4时,k=-4, ∴点D的坐标是(4,-4). ①如图(2),当AF为平行四边形的边时,AF平行且等于DE, ∵D(4,-4),∴DE=4. ∴F1(-6,0),F2(2,0), ②如图(3),当AF为平行四边形的对角线时,设F(n,0), ∵点A的坐标为(-2,0), 则平行四边形的对称中心的横坐标为:, ∴平行四边形的对称中心坐标为(,0), ∵D(4,-4), ∴E'的横坐标为:-4+=n-6, E'的纵坐标为:4, ∴E'的坐标为(n-6,4). 把E'(n-6,4)代入,得n2-16n+36=0. 解得.,, 综上所述F1(-6,0),F2(2,0),F3(8-2,0),F4(8+2,0).
复制答案
考点分析:
相关试题推荐
某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售.
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=-manfen5.com 满分网(x-8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
查看答案
如图,△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D点,E为BC的中点,连接ED并延长交BA延长线于F点.
(1)求证:直线DE是⊙O的切线;
(2)若AB=manfen5.com 满分网,AD=1,求线段AF的长;
(3)当D为EF的中点时,试探究线段AB与BC之间的数量关系.

manfen5.com 满分网 查看答案
如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

manfen5.com 满分网 查看答案
如图,等腰△ABC中,AB=AC,∠BAC=36°,以C为旋转中心,顺时针旋转△ABC到△DCE位置,使点A落在BC边的延长线上的E处,连接AD和BD.
(1)求证:△ADC≌△BCD;
(2)请判断△ABE的形状,并证明你的结论.

manfen5.com 满分网 查看答案
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=manfen5.com 满分网的图象上的概率;
(3)求小明、小华各取一次小球所确定的数x,y满足y<manfen5.com 满分网的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.