满分5 > 初中数学试题 >

如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,...

如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )
①OH=manfen5.com 满分网BF;②∠CHF=45°;③GH=manfen5.com 满分网BC;④DH2=HE•HB.
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
根据已知对各个结论进行分析,从而确定正确的个数.①作EJ⊥BD于J,连接EF,由全等三角形的判定定理可得△DJE≌△ECF,再由平行线的性质得出OH是△DBF的中位线即可得出结论; ②根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论; ③根据OH是△BFD的中位线,得出GH=CF,由GH<BC,可得出结论; ④由相似三角形的判定定理得出△DHG∽△BDH,根据相似三角形的对应边成比例即可得出结论. 【解析】 作EJ⊥BD于J,连接EF ①∵BE平分∠DBC ∴EC=EJ, ∴△DJE≌△ECF ∴DE=FE ∴∠HEF=45°+22.5°=67.5° ∴∠HFE==22.5° ∴∠EHF=180°-67.5°-22.5°=90° ∵DH=HF,OH是△DBF的中位线 ∴OH∥BF ∴OH=BF ②∵四边形ABCD是正方形,BE是∠DBC的平分线, ∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°, ∵CE=CF, ∴Rt△BCE≌Rt△DCF, ∴∠EBC=∠CDF=22.5°, ∴∠BFH=90°-∠CDF=90°-22.5°=67.5°, ∵OH是△DBF的中位线,CD⊥AF, ∴OH是CD的垂直平分线, ∴DH=CH, ∴∠CDF=∠DCH=22.5°, ∴∠HCF=90°-∠DCH=90°-22.5°=67.5°, ∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故②正确; ③∵OH是△BFD的中位线, ∴DG=CG=BC,GH=CF, ∵CE=CF, ∴GH=CF=CE ∵CE<CG=BC, ∴GH<BC,故此结论不成立; ④∵∠DBE=45°,BE是∠DBF的平分线, ∴∠DBH=22.5°, 由②知∠HBC=∠CDF=22.5°, ∴∠DBH=∠CDF, ∵∠BHD=∠BHD, ∴△DHE∽△BHD, ∴= ∴DH=HE•HB,故④成立; 所以①②④正确. 故选C.
复制答案
考点分析:
相关试题推荐
如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
manfen5.com 满分网
A.4manfen5.com 满分网
B.2manfen5.com 满分网
C.3
D.2
查看答案
如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为( )平方分米.
manfen5.com 满分网
A.36π
B.54π
C.27π
D.128π
查看答案
manfen5.com 满分网如图,已知双曲线y=manfen5.com 满分网(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为( )
A.12
B.9
C.6
D.4
查看答案
菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=manfen5.com 满分网,则点B的坐标为( )
manfen5.com 满分网
A.(manfen5.com 满分网,1)
B.(1,manfen5.com 满分网
C.(manfen5.com 满分网+1,1)
D.(1,manfen5.com 满分网+1)
查看答案
下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.