满分5 > 初中数学试题 >

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C...

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知抛物线的顶点,可先将抛物线的解析式设为顶点式,再将点C的坐标代入上面的解析式中,即可确定待定系数的值,由此得解. (2)可先求出A、C、D三点坐标,求出△ACD的三边长后,可判断出该三角形的形状,进而得到该三角形的面积.(也可将△ACD的面积视为梯形与两个小直角三角形的面积差) (3)由于直线EF与y轴平行,那么∠OCB=∠FED,若△OBC和△EFD相似,则△EFD中,∠EDF和∠EFD中必有一角是直角,可据此求出点F的横坐标,再代入直线BC的解析式中,即可求出点E的坐标. 【解析】 (1)依题意,设抛物线的解析式为 y=a(x-2)2-1,代入C(O,3)后,得: a(0-2)2-1=3,a=1 ∴抛物线的解析式:y=(x-2)2-1=x2-4x+3. (2)由(1)知,A(1,0)、B(3,0); 设直线BC的解析式为:y=kx+3,代入点B的坐标后,得: 3k+3=0,k=-1 ∴直线BC:y=-x+3; 由(1)知:抛物线的对称轴:x=2,则 D(2,1); ∴AD==,AC==,CD==2, 即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD; ∴S△ACD=AD•CD=××2=2. (3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有: ①∠DFE=90°,即 DF∥x轴; 将点D纵坐标代入抛物线的解析式中,得: x2-4x+3=1,解得 x=2±; 当x=2+时,y=-x+3=1-; 当x=2-时,y=-x+3=1+; ∴E1(2+,1-)、E2(2-,1+). ②∠EDF=90°; 易知,直线AD:y=x-1,联立抛物线的解析式有: x2-4x+3=x-1, x2-5x+4=0, 解得 x1=1、x2=4; 当x=1时,y=-x+3=2; 当x=4时,y=-x+3=-1; ∴E3(1,2)、E4(4,-1); 综上,存在符合条件的点E,且坐标为:(2+,1-)、(2-,1+)、(1,2)或(4,-1).
复制答案
考点分析:
相关试题推荐
如图,在菱形ABCD中,AB=2manfen5.com 满分网,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.
(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π);
(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF=manfen5.com 满分网S△MDF时,求动点M经过的弧长(结果保留π).

manfen5.com 满分网 查看答案
为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.
(1)每个文具盒、每支钢笔各多少元?
(2)时逢“五一”,商店举行优惠促销活动,具体办法如下:文具盒九折,钢笔10支以上超出部分八折.设买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;
(3)若购买同一种奖品,并且该奖品的数量超过10件,请分析买哪种奖品省钱.
查看答案
如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).
(1)探究DB′与EC′的数量关系,并给予证明;
(2)当DB′∥AE时,试求旋转角α的度数.

manfen5.com 满分网 查看答案
某市规划局计划在一坡角为16°的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为28°,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12m,⊙O的半径为1.5m,求雕塑最顶端到水平地面的垂直距离(结果精确到0.01m,参考数据:cos28°≈0.9,sin62°≈0.9,sin44°≈0.7,cos46°≈0.7).

manfen5.com 满分网 查看答案
某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
类别频数(人数)频率
武术类 0.25
书画类200.20
棋牌类15b
器乐类  
合计a1.00
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①a=______,b=______
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是______
③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.