满分5 > 初中数学试题 >

如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),...

如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;
(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.

manfen5.com 满分网
(1)根据A、B两点坐标求直线AB的解析式,令x=0,可求E点坐标; (2)设抛物线解析式为y=ax2+bx+c,将A(-2,2),B(6,6),O(0,0)三点坐标代入,列方程组求a、b、c的值即可; (3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,与抛物线解析式联立,得出关于x的一元二次方程,当△=0时,△BON面积最大,由此可求m的值及N点的坐标; (4)根据三角形相似的性质得到BO:OA=OP:AN=BP:ON,然后根据勾股定理分别计算出BO=6,OA=2,AN=,ON=,这样可求出OP=,BP=,设P点坐标为(x,y),再利用勾股定理得到关于x,y的方程组,解方程组即可. 【解析】 (1)设直线AB解析式为y=kx+b, 将A(-2,2),B(6,6)代入,得,解得, ∴y=x+3,令x=0, ∴E(0,3); (2)设抛物线解析式为y=ax2+b′x+c, 将A(-2,2),B(6,6),O(0,0)三点坐标代入,得,解得, ∴y=x2-x (3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m, 联立,得x2-6x-4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大, 解得m=-,x=3,y=,即N(3,); 此时△BON面积=×6×6-(+6)×3-××3=; (4)过点A作AS⊥GQ于S, ∵A(-2,2),B(6,6),N(3,), ∵∠AOE=∠OAS=∠BOH=45°, OG=3,NG=,NS=,AS=5, 在Rt△SAN和Rt△NOG中, ∴tan∠SAN=tan∠NOG=, ∴∠SAN=∠NOG, ∴∠OAS-∠SAN=∠BOG-∠NOG, ∴∠OAN=∠NOB, ∴ON的延长线上存在一点P,使得△BOP∽△OAN, ∵A(-2,2),N(3,), ∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN, ∴BO:OA=OP:AN=BP:ON 又∵A(-2,2),N(3,),B(6,6), ∴BO=6,OA=2,AN=,ON=, ∴OP=,BP=, 设P点坐标为(4x,x), ∴16x2+x2=()2, 解得x=,4x=15, ∵P、P′关于直线y=x轴对称, ∴P点坐标为(15,)或(,15).
复制答案
考点分析:
相关试题推荐
某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
A种产品B种产品
成本(万元/件)25
利润(万元/件)13
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
查看答案
通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=manfen5.com 满分网.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=______
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______
(3)如图②,已知sinA=manfen5.com 满分网,其中∠A为锐角,试求sadA的值.

manfen5.com 满分网 查看答案
若max{S1,S2,…,Sn}表示实数S1,S2,…,Sn中的最大者.设A=(a1,a2,a3),b=manfen5.com 满分网,记A⊗B=max{a1b1,a2b2,a3b3},设A=(x-1,x+1,1),manfen5.com 满分网,若A⊗B=x-1,则x的取值范围为    查看答案
已知:如图,三个半圆彼此相外切,它们的圆心都在x轴的正半轴上并与直线y=manfen5.com 满分网x相切,设半圆C1、半圆C2、半圆C3…的半径分别是r1、r2、r3….,则当r1=1时,则r2012=   
manfen5.com 满分网 查看答案
如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要    .(单位:mm)(用含x、y、z的代数式表示)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.