先由B、C两点坐标求出BC的长即可得出AC的长,过点A作AD⊥x轴,在Rt△ACD中利用直角三角形的性质可求出AD及CD的长,故可得出A点坐标,设反比例函数的解析式为y=,把A点坐标代入即可求出k的值,进而得出其解析式.
【解析】
∵点B、C的坐标分别为(2,0)、(8,0),
∴BC=8-2=6,
∵AC=BC,
∴AC=6,
过点A作AD⊥x轴,在Rt△ACD中,
∵∠ACO=30°,
∴AD=AC=×6=3,CD=AC•cos30°=6×=3,
∴OD=OC-CD=8-3,
∵点A在第一象限,
∴A(8-3,3),
设反比例函数的解析式为;y=,
∵点A(8-3,3)在反比例函数的图象上,
∴3=,解得k=24-9,
∴反比例函数的解析式为:y=.
故答案为:y=.