如图,二次函数y=ax
2+bx+c的图象与x轴、y轴分别交于A(-1,0)、B(5,0)、C(0,4)三点,顶点为点D.
(1)求二次函数的解析式,并求出顶点坐标;
(2)x轴上方的抛物线是否存在异于B、C的点P,过点P作x轴的垂线,垂足为点M,使直线BC平分△PMB的面积?如果存在,请求出点P的坐标;如果不存在,请说明理由;
(3)抛物线的对称轴上是否存在点Q,使AQ等于点B到直线AQ的距离?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.
考点分析:
相关试题推荐
如图,正方形ABCD与正方形BEFG有公共顶点B,点G在边BC上,AG的延长线交CE于点H,连接BH.
(1)求证:∠BAG=∠BCE;
(2)若AB=2BG,求
的值;
(3)若AB=kBG,直接写出
的值(用含k的代数式表示).
查看答案
在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.
(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写出它的定义域;
(2)当x=3时,求CF的长;
(3)当tan∠PAE=
时,求BP的长.
查看答案
甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)
之间的函数图象如图,根据图象所提供的信息,解答问题:
(1)他们在进行______米的长跑训练,在0<x<15的时间段内,速度较快的人
是______;
(2)求甲距终点的路程y(米)和跑步时间 x(分)之间的函数关系式,并求当x=15时,两人相距的距离;
(3)在15<x<20的时间段内,求两人速度之差.
查看答案
如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.
查看答案
军舰在点A处接到命令,要求它向位于点B处的渔船进行营救.已知军舰在渔船的北偏西53°方向60海里处,渔船沿正西方向航行.如果军舰立即沿东南方向航行,恰好能在点C处与渔船相遇.
(1)求军舰行驶的距离AC的长;
(2)求渔船行驶距离BC的长;(结果精确到0.1km.参考数据:
≈1.41,sin53°=0.7986,cos53°=0.6018,tan53°=1.3270)
查看答案