如图,在平面直角坐标系中,直线AC:
与x轴交于点A,与y轴交于点C,抛物线y=ax
2+bx+c过点A、点C,且与x轴的另一交点为B(x
,0),其中x
>0,又点P是抛物线的对称轴l上一动点.
(1)求点A的坐标,并在图1中的l上找一点P
,使P
到点A与点C的距离之和最小;
(2)若△PAC周长的最小值为
,求抛物线的解析式及顶点N的坐标;
(3)如图2,在线段CO上有一动点M以每秒2个单位的速度从点C向点O移动(M不与端点C、O重合),过点M作MH∥CB交x轴于点H,设M移动的时间为t秒,试把△P
HM的面积S表示成时间t的函数,当t为何值时,S有最大值,并求出最大值;
(4)在(3)的条件下,当
时,过M作x轴的平行线交抛物线于E、F两点,问:过E、F、C三点的圆与直线CN能否相切于点C?请证明你的结论.(备用图图3)
考点分析:
相关试题推荐
甲船从A港出发顺流匀速驶向B港,乙船同时从B港出发逆流匀速驶向A港.甲船行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h.甲、乙两船离A港的距离y
1、y
2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)甲船在顺流中行驶的速度为______km/h,m=______;
(2)①当0≤x≤4时,求y
2与x之间的函数关系式;②甲船到达B港时,乙船离A港的距离为多少?
(3)救生圈在水中共漂流了多长时间?
查看答案
如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?
查看答案
在直角三角形中,如果已知2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以求出其余的未知元素呢?思考并解答下列问题:
(1)观察下列4幅图,根据图中已知元素,可以求出其余未知元素的三角形是______.
(2)如图,在△ABC中,已知∠B=40°,BC=12,AB=10,能否求出AC?如果能,请求出AC的长度(答案保留根号);如果不能,还需要增加哪个条件?(参考数据:sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)
查看答案
城南中学九年级共有12个班,每班48名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:
收集数据:
(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有______.①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生.
整理数据:
(2)将抽取的60名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:
①C类和D类部分的圆心角度数分别为______;
②估计全年级A、B类学生大约一共有______名.
分析数据:
(3)教育主管部们为了解学校教学情况,将同层次的城南、城北两所中学的抽样数据进行对比,得下表:
学校 | 平均数(分) | 极差(分) | 方差 | A、B类的频率和 |
城南中学 | 71 | 52 | 432 | 0.75 |
城北中学 | 71 | 80 | 497 | 0.82 |
你认为哪所学校的教学效果较好?结合数据,请提出一个解释来支持你的观点.
成绩(单位:分) | 频数 | 频率 |
A类(80~100) | 24 | |
B类(60~79) | 12 | |
C类(40~59) | 8 | |
D类(0~39) | 4 | |
查看答案
已知P(-3,m)和Q(1,m)是二次函数y=2x
2+bx+1图象上的两点.
(1)求b的值;
(2)将二次函数y=2x
2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
查看答案