小王家是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:
项目类别 | 鱼苗投资 (百元) | 饲料支出 (百元) | 收获成品鱼(千克) | 成品鱼价格 (百元/千克) |
A种鱼 | 2.3 | 3 | 100 | 0.1 |
B种鱼 | 4 | 5.5 | 55 | 0.4 |
(1)小王有哪几种养殖方式?
(2)哪种养殖方案获得的利润最大?
(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)
考点分析:
相关试题推荐
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=
时,求⊙O的半径.
查看答案
已知关于x的方程k
2x
2-(2k+1)x+1=0有两个不相等的实数根x
1、x
2.
(1)求k的最小整数值;
(2)若(|x
1|-1)(|x
2|-1)=-3k,求k的值.
查看答案
在一个不透明的盒子中装有相同形状和大小的2个黄球、1个黑球和若干红球,且已知从盒中随机摸出一个球为黄球的概率为
.
(1)则盒中有______个红球;
(2)一枚棋子放在边长为1个单位长度的正五边形ABCDE的顶点A处,将棋子沿边按顺时针方向走动,通过摸球来确定棋子的走法.其规则是:摸到红球,则棋子走1个单位长度,摸到黄球,则棋子走2个单位长度,摸到黑球,则棋子走3个单位长度,先摸出一个球,再从剩下的球中摸出一个球,根据摸出的两个球的颜色两次连续走动棋子.两次连续走动之后,棋子走到哪一点的可能性最大?并求出棋子走到该点的概率.
查看答案
如图,网格中每个小正方形的边长都是1个单位.折线段ABC的位置如图所示.
(1)现把折线段ABC向右平移4个单位,画出相应的图形A′B′C′;
(2)把折线段A′B′C′绕线段AA′的中点D顺时针旋转90°,画出相应的图形A″B″C″;
(3)在上述两次变换中,点C→C′→C″的路径的长度比点A→A′→A″的路径的长度大______
查看答案
(1)计算:(
-
)
-
+|-6|+2sin60°+(-3
2)-(-2)
-2(2)先化简:(1-
)÷
,然后从-2≤x≤2小范围内选取一个合适的整数作为x的值代入求值.
查看答案