满分5 > 初中数学试题 >

阅读以下短文,然后解决下列问题: 如果一个三角形和一个矩形满足条件:三角形的一边...

阅读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”,显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.
(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;
(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
(3)若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.manfen5.com 满分网
(1)类似“友好矩形”的定义,即可写出“友好平行四边形”的定义: 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”; (2)根据定义,则分别让直角三角形的直角边或斜边当矩形的一边,过第三个顶点作它的对边,从而画出矩形.根据每个矩形和直角三角形的面积的关系,比较两个矩形的面积大小; (3)分别以三角形的一边当矩形的另一边,过第三个顶点作矩形的对边,从而画出矩形,根据三角形和矩形的面积公式,可知三个矩形的面积相等,设矩形的面积是S,三角形的三条边分别是a,b,c.根据矩形的面积由其中一边表示出矩形的另一边,进一步求得其周长,运用求差法比较它们的周长的大小. 【解析】 (1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.      (2)此时共有2个友好矩形,如图的BCAD、ABEF.      易知,矩形BCAD、ABEF的面积都等于△ABC面积的2倍, ∴△ABC的“友好矩形”的面积相等.                 (3)此时共有3个友好矩形,如图的BCDE、CAFG及ABHK, 其中的矩形ABHK的周长最小.                         证明如下: 易知,这三个矩形的面积相等,令其为S,设矩形BCDE、CAFG及ABHK的周长分别为L1,L2,L3, △ABC的边长BC=a,CA=b,AB=c,则: L1=+2a,L2=+2b,L3=+2c, ∴L1-L2=(+2a)-(+2b)=-(a-b)+2(a-b)=2(a-b), 而ab>S,a>b, ∴L1-L2>0,即L1>L2, 同理可得,L2>L3, ∴L3最小,即矩形ABHK的周长最小.
复制答案
考点分析:
相关试题推荐
某旅游胜地欲开发一座景观山.从山的侧面进行勘测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为y=-manfen5.com 满分网x2+8,BC所在抛物线的解析式为y=manfen5.com 满分网(x-8)2,且已知B(m,4).
(1)设P(x,y)是山坡线AB上任意一点,用y表示x,并求点B的坐标;
(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).
①分别求出前三级台阶的长度(精确到厘米);
②这种台阶不能一直铺到山脚,为什么?
(3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E处,OE=1600(米).假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为y=manfen5.com 满分网(x-16)2.试求索道的最大悬空高度.

manfen5.com 满分网 查看答案
为了节约水资源,自来水公司今年收取水费作出了新的规定,但小红同学只了解到水价是按用水量分段收取,其图象如图(其中m1,m2的具体数字因破损看不清);按新规定的第1个月,小红家用去水30吨,缴约水费83.20元,第2个月小红家用去水25吨,缴纳水费64元.
(1)请你帮小红同学计算出水价m1和m2的值(要求列方程解答);
(2)为了节约开支,小红家对部分生活用水进行了二次利用,结果当月缴纳水费54.40元,那么这个月小红家用来自来水公司多少吨的水?

manfen5.com 满分网 查看答案
如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.
(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)
(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;
(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.

manfen5.com 满分网 查看答案
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=manfen5.com 满分网,sinA′=manfen5.com 满分网
(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)

manfen5.com 满分网 查看答案
小明和小颖做掷骰子的游戏,规则如下:
①游戏前,每人选一个数字;
②每次同时掷两枚均匀骰子;
③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
(2)小明选的数字是5,小颖选的数字是8.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
  1 3 5
 1      
 2      
 3      
 4      
 5      
 6      

查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.