设⊙O和AC,AB分别相切于点D、E,连接OD、OE.设圆的半径是x.根据切线长定理和勾股定理求解.
【解析】
设⊙O和AC,AB分别相切于点D、E,连接OD、OE.
设圆的半径是x.在直角三角形ABC中,根据勾股定理得BC=6.
又PC=8-2=6,则BC=PC,
所以∠BPC=45°,
∴PD=OD=x,AD=x+2,
根据切线长定理得AE=x+2,BE=10-(2+x)=8-x,OB=BP-OP=6-x;
在直角三角形OBE中,根据勾股定理得:
(6-x)2=x2+(8-x)2,
∴x=1,即⊙O的半径是1.