满分5 > 初中数学试题 >

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y...

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).
(1)试求出△APQ的面积S与运动时间t之间的函数关系式;
(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.
(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.
(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.
manfen5.com 满分网
manfen5.com 满分网
过Q作QH⊥AP于H点,构造直角三角形APQ. (1)在Rt△AOB中,利用勾股定理求得AB;①P由O向A运动时,OP=AQ=t,AP=4-t.根据平行线截线段成比例的性质求得QH,然后求△APQ的面积;②P由A向O运动时,AP=t-4,AQ=t,由直角三角形ABO中的锐角的正弦求得QH=,然后求△APQ的面积; (2)根据翻折的性质知△APQ≌△DPQ,∠AQP=90°.在直角三角形AOB与直角三角形APQ中通过∠A的余弦值求得cosA===.①当0<t<4时,求得t值;②当4<t≤5时,求得t值;然后将其代入(1)中的函数解析式; (3)①若PE∥BQ,则梯形PQBE是等腰梯形.过E、P分分别作EM⊥AB于M,PN⊥AB于N.构造矩形PNME.则有BM=QN,由PE∥BQ, 得,从而求得MB的值;在直角三角形APN中根据AP求得QN的值,然后由BM=QN,求得t,所以点E的坐标就迎刃而解了;②若PQ∥BE,则等腰梯形PQBE中BQ=EP且PQ⊥OA于P点.由OP+AP=OA求得t值; (4)①当P由O向A运动时,OQ=OP=AQ=t.再有边角关系求得BQ=AQ=AE,解得t值;②②当P由A向O运动时,OQ=OP=8-t.在Rt△OGQ中,利用勾股定理得OQ2=QG2+OG2,列出关于t的方程,解方程即可. 【解析】 (1)在Rt△AOB中,OA=4,OB=3 ∴AB= ①P由O向A运动时,OP=AQ=t,AP=4-t 过Q作QH⊥AP于H点. 由QH∥BO,得 ∴ 即(0<t<4) ②当4<t≤5时,即P由A向O运动时,AP=t-4AQ=t sin∠BAO= QH=, ∴ =; 综上所述,S△APQ=; (2)由题意知,此时△APQ≌△DPQ,∠AQP=90°, ∴cosA===, 当0<t<4∴即 当4<t≤5时,=,t=-16(舍去) ∴; (3)存在,有以下两种情况 ①若PE∥BQ,则等腰梯形PQBE中PQ=BE 过E、P分分别作EM⊥AB于M,PN⊥AB于N. 则有BM=QN,由PE∥BQ, 得, ∴; 又∵AP=4-t, ∴AN=, ∴, 由BM=QN,得 ∴, ∴; ②若PQ∥BE,则等腰梯形PQBE中 BQ=EP且PQ⊥OA于P点 由题意知 ∵OP+AP=OA, ∴ ∴t=, ∴OE=, ∴点E(0,-) 由①②得E点坐标为(0,)或(0,-). (4)①当P由O向A运动时,OQ=OP=AQ=t. 可得∠QOA=∠QAO∴∠QOB=∠QBO ∴OQ=BQ=t∴BQ=AQ=AE ∴; ②当P由A向O运动时,OQ=OP=8-t BQ=5-t, 在Rt△OGQ中,OQ2=QG2+OG2 即(8-t)2= ∴t=5
复制答案
考点分析:
相关试题推荐
红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天)1361036
日销售量m(件)9490847624
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=manfen5.com 满分网t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-manfen5.com 满分网t+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
查看答案
图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
(1)求x的取值范围;
(2)若∠CPN=60°,求x的值;
(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留).
manfen5.com 满分网
查看答案
如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=manfen5.com 满分网,求DC的长.

manfen5.com 满分网 查看答案
有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图并写出(m,n)的所有取值;
(2)求关于x的一元二次方程x2-mx+manfen5.com 满分网n=0有实数根的概率.
查看答案
如图,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF分别交AB、DC于点E、F,与CB、AD的延长线分别交于点G、H.
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.