某商场计划采购甲、乙、丙三种型号的“格力”牌空调共25台.三种型号的空调进价和售价如下表:
种类 价格 | 甲 | 乙 | 丙 |
进价(元/台) | 1600 | 1800 | 2400 |
售价(元/台) | 1800 | 2050 | 2600 |
商场计划投入总资金5万元,所购进的甲、丙型号空调数量相同,乙型号数量不超过甲型号数量的一半.若设购买甲型号空调x台,所有型号空调全部售出后获得的总利润为W元.
(1)求W与x之间的函数关系式.
(2)商场如何采购空调才能获得最大利润?
(3)由于原材料上涨,商场决定将丙型号空调的售价提高a元(a≥100),其余型号售价不变,则商场又该如何采购才能获得最大利润?
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠ACB=90°,△MDB的一边DB在AB上,边MD与AC交于点N,以BD为直径的⊙O与边AC恰相切于点N,与MB交于点E.
(1)求证:∠AND=
∠MBD;
(2)若BC=6,AD=4,求
的长.(结果保留π)
查看答案
我市某旗在棚户区改造工程中需要修建一段东西方向全长2000米的道路(记作AB).已知C点周围700米范围内有一电力设施区域.在A处测得C在A的北偏东60°方向上,在B处测得C在B的北偏西45°方向上.(
≈1.732,
≈1.414)
(1)道路AB是否穿过电力设施区域?为什么?
(2)在施工500米后,为了尽量减少施工对城市交通所造成的影响,加快了施工进度,实际工作效率变成了原计划工作效率的1.5倍,结果提前5天完成了修路任务,则原计划每天修路多少米?
查看答案
在▱ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.
(1)求证:EF=BF;
(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.
查看答案
如图,在平面直角坐标系中,▱OABC的顶点O与坐标原点重合,顶点B的坐标为(4,2),OC边在x轴上.反比例函数y=
(x>0)的图象经过点A,过点A的直线y=-
x+
与x轴交于点E.
(1)直接写出点A的坐标与k的值.
(2)连接BE,所得梯形OABE是等腰梯形吗?请说明理由.
(3)请判断:▱OABC的对称中心______(填“在”或“不在”)该反比例函数的图象上.
查看答案
某学校食堂为全体学生提供了四种价格的午餐供其选择,四种价格分别是A.5元 B.6元 C.8元 D.10元.为了解学生对四种午餐的购买情况,学校随机抽样调查了人数相等的甲、乙两班学生某天四种午餐的购买情况,依统计数据绘制成了如下两幅尚不完整的统计图(部分信息未给出):
(1)求乙班学生人数,并补全条形统计图.
(2)求乙班购买午餐费用的平均价和中位数;已知甲班购买午餐费用的平均价为7.2元,中位数为6元,从平均价和中位数的角度分析,哪个班购买午餐的价位较高?
(3)从这次接受调查的学生中,随机抽查一人,恰好是购买C种午餐的学生的概率是多少?
查看答案