满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象顶点为D...

如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=manfen5.com 满分网
(1)求这个二次函数的解析式;
(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;
(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.
manfen5.com 满分网
(1)由点B的坐标为(3,0),OB=OC,即可求得点C的坐标,又由tan∠ACO=,即可求得点A的坐标,然后设两点式y=a(x+1)(x-3),将点C代入,即可求得这个二次函数的解析式; (2)分别从当直线MN在x轴上方时与当直线MN在x轴下方时去分析,然后由所求圆的圆心在抛物线的对称轴x=1上,即可求得点的坐标,又由点在二次函数的图象上,即可求得该圆的半径长度; (3)首先过点P作y轴的平行线与AG交于点Q,然后求得点G的坐与直线AG得方程,然后由S△AGP=S△APQ+S△GPQ=PQ•(G横坐标-A横坐标),利用二次函数的最值问题,即可求得此时点P的坐标和△AGP的最大面积. 【解析】 (1)由OC=OB=3,可知点C坐标是(0,-3), 连接AC,在Rt△AOC中, ∵tan∠ACO=, ∴OA=OC×tan∠ACO=3×=1, 故A(-1,0),…(3分) 设这个二次函数的表达式为:y=a(x+1)(x-3), 将C(0,-3)代入得:-3=a(0+1)(0-3), 解得:a=1, ∴这个二次函数的表达式为:y=(x+1)(x-3)=x2-2x-3.…(5分) (2)①当直线MN在x轴上方时,设所求圆的半径为R(R>0),设M在N的左侧, ∵所求圆的圆心在抛物线的对称轴x=1上, ∴N(R+1,R)代入y=x2-2x-3中得:R=(R+1)2-2(R+1)-3, 解得R=.…(10分) ②当直线MN在x轴下方时,设所求圆的半径为r(r>0),由①可知N(r+1,-r),代入抛物线方程y=x2-2x-3,可得-r=(r+1)2-2(r+1)-3, 解得:r=.…(13分) (3)过点P作y轴的平行线与AG交于点Q, 把G(2,y)代入抛物线的解析式y=x2-2x-3,得G(2,-3).…(15分) 由A(-1,0)可得直线AG的方程为:y=-x-1,…(16分) 设P(x,x2-2x-3),则Q(x,-x-1), ∴PQ=-x2+x+2, S△AGP=S△APQ+S△GPQ=PQ•(G横坐标-A横坐标)=(-x2+x+2)×3=-(x-)2+,…(18分) 当x=时,△APG的面积最大,…(19分) 此时P点的坐标为(,-),△APG的面积最大值为.…(20分)
复制答案
考点分析:
相关试题推荐
在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图(1)与(2)是旋转三角板所得图形的两种情况.
(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;
(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图(1)或(2)加以证明;
(3)若将三角板的直角顶点放在斜边上的点P处(如图(3)),当AP:AC=1:4时,PE和PF有怎样的数量关系?证明你发现的结论.
manfen5.com 满分网
查看答案
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB=10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.

manfen5.com 满分网 查看答案
某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟同通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.
查看答案
吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.
请你根据图表提供的信息,解答下列问题:
(1)求频率分布表中a,b,c的值;并补全频数分布直方图;
(2)如果用扇形统计图表示这次数学考试成绩时,那么成绩在69.5~79.5范围内的扇形圆心角的度数为多少度?
 分组49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计 
 频数 3 1026  6
 频率 0.060.10 0.20  0.521.00 


manfen5.com 满分网 查看答案
放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D处.此时风筝线AD与水平线的夹角为30°. 为了便于观察.小明迅速向前边移动边收线到达了离A处7米的B处,此时风筝线BD与水平线的夹角为45°.已知点A、B、C在冋一条直线上,∠ACD=90°.请你求出小明此吋所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732.最后结果精确到1米)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.