满分5 > 初中数学试题 >

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形...

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-manfen5.com 满分网的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-manfen5.com 满分网,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

manfen5.com 满分网
(1)根据要求,画出符合条件的另一个正方形PQ1M1N1,即可写出点M1的坐标; (2)由于四边形PQMN与四边形PQ1M1N1都是正方形,结合图象分析,可得出M1、P、M三点共线,再求得直线M1M的斜率,代入P点坐标,求得b=m; (3)依据(2)的规律,如果点P的坐标为(6,0),则直线M1M的解析式为y=-x+6,又点M(x,y)在反比例函数y=-的图象上,故x•(-x+6)=-2,解此方程,求出x的值,进而得出点M1和点M的坐标. 【解析】 (1)如图,画出符合条件的另一个正方形PQ1M1N1, 则容易看出M1的坐标为(-1,2); (2)由于四边形PQMN与四边形PQ1M1N1都是正方形, 则∠MPN=∠Q1PM1=45°,∠Q1PN=90°,∴∠M1PM=180°, ∴M1、P、M三点共线,由tan∠Q1PM1=1, 可知不管P点在哪里,k﹦-1; 把x=m代入y=-x+b,得b=m; (3)由(2)知,直线M1M的解析式为y=-x+6, 则M(x,y)满足x•(-x+6)=-2, 解得x1=3+,x2=3-, ∴y1=3-,y2=3+. ∴M1,M的坐标分别为(3-,3+),(3+,3-).
复制答案
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O相切,交CB的延长线于E.
(1)判断直线AC和DE是否平行,并说明理由;
(2)若∠A=30°,BE=1cm,分别求线段DE和manfen5.com 满分网的长(直接写出最后结果).

manfen5.com 满分网 查看答案
如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
manfen5.com 满分网
查看答案
“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.
(1)该顾客至多可得到 ______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
manfen5.com 满分网某风景管理区为提高游客到某景点的安全性,决定将到达该景点的步行台阶改善,把倾角由45°减至30°,已知原台阶坡面AB的长为manfen5.com 满分网米(BC所在地面为水平面).
(1)改善后的台阶坡面会AD长多少米?
(2)改善后的台阶会多占多长一段水平地面?(结果保留根号)
查看答案
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,并从中随机抽取了部分学生成绩(得分取整数,满分为100分)为样本,绘制成统计图(如图所示),请根据统计图提供的信息回答下列问题:
(1)本次测试抽取了______名学生的成绩为样本.
(2)样本中,分数在80~90这一组的频率是______
(3)样本的中位数落在______这一小组内.
(4)如果这次测试成绩80分以上(含80分)为优良,那么在抽取的学生中,优良人数为23名;如果该校有840名学生参加这次竞赛活动,估计优良学生的人数约为______名.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.