已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-
的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M
1在第二象限.
(1)如图所示,若反比例函数解析式为y=-
,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ
1M
1N
1,并写出点M
1的坐标;M
1的坐标是______.
(2)请你通过改变P点坐标,对直线M
1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______;
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M
1和点M的坐标.
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O相切,交CB的延长线于E.
(1)判断直线AC和DE是否平行,并说明理由;
(2)若∠A=30°,BE=1cm,分别求线段DE和
的长(直接写出最后结果).
查看答案
如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
查看答案
“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.
(1)该顾客至多可得到 ______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
某风景管理区为提高游客到某景点的安全性,决定将到达该景点的步行台阶改善,把倾角由45°减至30°,已知原台阶坡面AB的长为
米(BC所在地面为水平面).
(1)改善后的台阶坡面会AD长多少米?
(2)改善后的台阶会多占多长一段水平地面?(结果保留根号)
查看答案
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,并从中随机抽取了部分学生成绩(得分取整数,满分为100分)为样本,绘制成统计图(如图所示),请根据统计图提供的信息回答下列问题:
(1)本次测试抽取了______名学生的成绩为样本.
(2)样本中,分数在80~90这一组的频率是______.
(3)样本的中位数落在______这一小组内.
(4)如果这次测试成绩80分以上(含80分)为优良,那么在抽取的学生中,优良人数为23名;如果该校有840名学生参加这次竞赛活动,估计优良学生的人数约为______名.
查看答案