满分5 > 初中数学试题 >

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=...

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐______.(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
manfen5.com 满分网
(1)根据题意,观察图形,F、C两点间的距离逐渐变小; (2)①因为∠B=90°,∠A=30°,BC=6cm,所以AC=12cm,又因为∠FDE=90°,∠DEF=45°,DE=4cm,所以DF=4cm,连接FC,设FC∥AB,则可求证∠FCD=∠A=30°,故AD的长可求; ②设AD=x,则FC2=DC2+FD2=(12-x)2+16,再分情况讨论:FC为斜边;AD为斜边;BC为斜边.综合分析即可求得AD的长; ③假设∠FCD=15°,因为∠EFC=30°,作∠EFC的平分线,交AC于点P,则∠EFP=∠CFP=∠DFE+∠EFP=60°,所以PD=4cm,PC=PF=2FD=8cm,故不存在. 【解析】 (1)变小; (2)问题①:∵∠B=90°,∠A=30°,BC=6cm ∴AC=12cm ∵∠FDE=90°,∠DEF=45°,DE=4cm ∴DF=4cm 连接FC,设FC∥AB ∴∠FCD=∠A=30° ∴在Rt△FDC中,DC=4cm ∴AD=AC-DC=(12-4)cm ∴AD=(12-4)cm时,FC∥AB; 问题②:设AD=x,在Rt△FDC中,FC2=DC2+FD2=(12-x)2+16 ∵AC=12cm,DE=4cm, ∴AD≤8cm, (I)当FC为斜边时, 由AD2+BC2=FC2得,x2+62=(12-x)2+16,x=; (II)当AD为斜边时, 由FC2+BC2=AD2得,(12-x)2+16+62=x2,x=>8(不合题意舍去); (III)当BC为斜边时, 由AD2+FC2=BC2得,x2+(12-x)2+16=36,x2-12x+62=0, 方程无解, ∴由(I)、(II)、(III)得,当x=cm时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形; 另【解析】 BC不能为斜边, ∵FC>CD,∴FC+AD>12 ∴FC、AD中至少有一条线段的长度大于6, ∴BC不能为斜边, ∴由(I)、(II)、(III)得,当x=cm时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形; 问题③:解法一:不存在这样的位置,使得∠FCD=15° 理由如下: 假设∠FCD=15° ∵∠EFC=30° 作∠EFC的平分线,交AC于点P 则∠EFP=∠CFP=15°,∠DFE+∠EFP=60° ∴PD=4cm,PC=PF=2FD=8cm, ∴PC+PD=8+4>12 ∴不存在这样的位置,使得∠FCD=15° 解法二:不存在这样的位置,使得∠FCD=15° 假设∠FCE=15°AD=x 由∠FED=45° 得∠EFC=30° 作EH⊥FC,垂足为H. ∴HE=EF=2cm CE=AC-AD-DE=(8-x)cm 且FC2=(12-x)2+16 ∵∠FDC=∠EHC=90° ∠DCF为公共角 ∴△CHE∽△CDF ∴=又()2=()2= ∴()2=,即=整理后,得到方程x2-8x-32=0 ∴x1=4-4<0(不符合题意,舍去) x2=4+4>8(不符合题意,舍去) ∴不存在这样的位置,使得∠FCD=15°.
复制答案
考点分析:
相关试题推荐
阅读材料,解答问题.
例   用图象法解一元二次不等式:.x2-2x-3>0
【解析】
设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3>0的解集是______
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.
manfen5.com 满分网
查看答案
北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68 000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=manfen5.com 满分网×100%)
查看答案
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
查看答案
如图,A、B两点在函数y=manfen5.com 满分网(x>0)的图象上.
(1)求m的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.

manfen5.com 满分网 查看答案
已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,且∠1=∠2.
(1)填空:图中与△BEF全等的三角形是______,与△BEF相似的三角形是______(不再添加任何辅助线);
(2)对(1)中的两个结论选择其中一个给予证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.