首先根据平行线等分线段定理得到BE=BF,再结合AB⊥EF得到AE=AF.只需再进一步得到有一个角是60度即可.根据折叠知∠B′AE=∠BAE,根据等腰三角形的三线合一得到∠BAE=∠BAF,从而得到∠EAF=60°,根据有一个角是60°的等腰三角形是等边三角形,进而求出面积即可.
【解析】
∵AD∥MN∥BC,AM=BM,
∴BE=BF,
又∠ABE=∠B′=90°,
∴AE=AF,
∴∠BAE=∠BAF.
根据折叠得∠B′AE=∠BAE,
∴∠B′AE=∠BAE=∠BAF=30°,
∴∠EAF=60°,
∴△EAF即为等边三角形.
∵矩形的宽CD=4,
∴AB=4,
tan30°=,
即:=,
解得:BF=,
∴EF=,
故△AEF的面积为:AB×EF=×4×=,
故选:A.