由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.
【解析】
∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,AE为△AED和△AEF的公共边,
∴△AED≌△AEF
∴ED=FE
在Rt△ABC中,∠ABC+∠ACB=90°,
又∵∠ACB=∠ABF,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴在Rt△FBE中BE2+BF2=FE2,
∴BE+DC=DE③显然是不成立的.
故正确的有①④,不正确的有③,②不一定正确.
故选B