满分5 > 初中数学试题 >

当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(...

当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.

manfen5.com 满分网
(1)已知,当x=2时,抛物线的最小值为-1,因此抛物线的顶点坐标为(2,-1);可用顶点式来设抛物线的解析式,然后将C的坐标代入即可求出抛物线的解析式. (2)可先将M,N的坐标代入(1)的抛物线解析式中,可得出y1、y2的表达式.然后让y1-y2,然后看得出的结果中在x的不同取值范围下,y1、y2的大小关系. (3)由于EF∥OC,那么∠FED=45°,因此要使三角形EFD与三角形COA相似,只有两种情况: ①当D为直角顶点时,∠EDF=90°,由于D是AC中点,而FD⊥AC,三角形AOC又是个等腰直角三角形,因此DF正好在∠COA的平分线上,即DF在直线y=x上,此时可先求出直线AC的函数关系式,然后联立抛物线的解析式求出F的坐标,由于E、F的横坐标相同,将F的横坐标代入AC所在的直线的解析式中即可求出E点的坐标. ②当F为直角顶点时,∠EFD=90°,那么DF与三角形AOC的中位线在同一直线上,即DF所在的直线的解析式为y=,然后可根据①的方法求出E点的坐标. 【解析】 (1)由题意可设抛物线的关系式为 y=a(x-2)2-1 因为点C(0,3)在抛物线上 所以3=a(0-2)2-1,即a=1 所以, 抛物线的关系式为y=(x-2)2-1=x2-4x+3; (2)∵点M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4x+3)-[(x+1)2-4(x+1)+3]=3-2x 当3-2x>0,即x<时,y1>y2 当3-2x=0,即x=时,y1=y2 当3-2x<0,即x>时,y1<y2 (3)令y=0,即x2-4x+3=0, 得点A(3,0),B(1,0),线段AC的中点为D(,) 直线AC的函数关系式为y=-x+3 因为△OAC是等腰直角三角形, 所以,要使△DEF与△AOC相似,△DEF也必须是等腰直角三角形. 由于EF∥OC,因此∠DEF=45°, 所以,在△DEF中只可能以点D、F为直角顶点. ①当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为 由x2-4x+3=,解得x=,x=(舍去) 将代入y=-x+3, 得点E(,) ②当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点, 因此,DF所在直线过原点O,其关系式为y=x. 解x2-4x+3=x,得,(舍去) 将代入y=-x+3, 得点E(,).
复制答案
考点分析:
相关试题推荐
在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.
manfen5.com 满分网
(1)如图1,当点M在AB边上时,连接BN:
①求证:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
查看答案
某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系.
结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点B的坐标和AB所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于点E.
(1)证明:BE=CE;
(2)证明:∠D=∠AEC;
(3)若⊙O的半径为5,BC=8,求△CDE的面积.

manfen5.com 满分网 查看答案
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是______
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是______
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

manfen5.com 满分网 查看答案
如图,某拦河坝截面的原设计方案为:AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m.为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.