满分5 > 初中数学试题 >

如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,...

如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.
(1)求点O到BD的距离及∠OBD的度数;
(2)若DE=2BE,求cos∠OED的值和CD的长.

manfen5.com 满分网
(1)作OF⊥BD于点F,连接OD,根据圆周角定理可得出∠DOB=120°,再由OB=OD=AC=2,可得出∠OBD的度数,也可得出OF的长度; (2)设BE=2x,则可表示出DF、EF的长度,从而可解出x的值,在RT△OEF中,利用三角函数值的知识可求出∠OED的度数,也可得出cos∠OED的值,判断出DO⊥AC,然后利用等腰直角三角形的性质可得出CD的长度. 【解析】 (1)作OF⊥BD于点F,连接OD, ∵∠BAD=60°, ∴∠BOD=2∠BAD=120°, 又∵OB=OD, ∴∠OBD=30°, ∵AC为⊙O的直径,AC=4, ∴OB=OD=2. 在Rt△BOF中,∵∠OFB=90°,OB=2,∠OBF=30°, ∴OF=OB•sin∠OBF=2sin30°=1, 即点O到BD的距离等于1. (2)∵OB=OD,OF⊥BD于点F, ∴BF=DF. 由DE=2BE,设BE=2x,则DE=4x,BD=6x,EF=x,BF=3x. ∵BF=OB•cos30°=, ∴,EF=, 在Rt△OEF中,∠OFE=90°,∵tan∠OED==, ∴∠OED=60°,cos∠OED=, ∴∠BOE=∠OED-∠OBD=30°, ∴∠DOC=∠DOB-∠BOE=90°, ∴∠C=45°. ∴CD=OC=2.
复制答案
考点分析:
相关试题推荐
如图,梯形ABCD中,AD∥BC,∠A=90°,BC=2,∠ABD=15°,∠C=60°.
(1)求∠BDC的度数;
(2)求AB的长.

manfen5.com 满分网 查看答案
为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动.对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.
捐款户数分组统计表
组别捐款额(x)元户数
A1≤x<100a
B100≤x<20010
C200≤x<300
D300≤x<400
Ex≥400
请结合以上信息解答下列问题.
(1)a=______,本次调查样本的容量是______
(2)先求出C组的户数,再补全“捐款户数分组统计图1”;
(3)若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?

manfen5.com 满分网 查看答案
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
查看答案
平面直角坐标系xOy中,反比例函数manfen5.com 满分网(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求m和k的值;
(2)若过点A的直线与y轴交于点C,且∠ACO=45°,直接写出点C的坐标.
查看答案
已知2a+b=0,其中a不为0,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.