如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.
①求证:AG=GD;
②当∠ABC满足什么条件时,△DFG是等边三角形?
③若AB=10,sin∠ABD=
,求BC的长.
查看答案
阜宁火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往南京,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元.
(1)设运输这批货物的总运费为y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系式;
(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来;
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?
查看答案
下列命题正确的有
①经过平行四边形的对角线交点的直线把平行四边形面积二等分;
②⊙O中弦AB所对的圆心角为70°,点C为⊙O上一点(与A、B不重合),则∠ACB=35°;
③正多边形都是中心对称图形;
④三角形一边上的中线等于这一边的一半,则这个三角形是直角三角形.
查看答案
若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是
.
查看答案
如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为
.
查看答案