满分5 > 初中数学试题 >

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是B...

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
manfen5.com 满分网
(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN. (2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN. (3)由(1)(2)可知,∠AMN等于它所在的正多边形的一个内角即等于时,结论AM=MN仍然成立. (1)证明:在边AB上截取AE=MC,连接ME. ∵正方形ABCD中,∠B=∠BCD=90°,AB=BC. ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE, BE=AB-AE=BC-MC=BM, ∴∠BEM=45°,∴∠AEM=135°. ∵N是∠DCP的平分线上一点, ∴∠NCP=45°,∴∠MCN=135°. 在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN, ∴△AEM≌△MCN(ASA), ∴AM=MN. (2)【解析】 结论AM=MN还成立 证明:在边AB上截取AE=MC,连接ME. 在正△ABC中,∠B=∠BCA=60°,AB=BC. ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE, BE=AB-AE=BC-MC=BM, ∴∠BEM=60°,∴∠AEM=120°. ∵N是∠ACP的平分线上一点, ∴∠ACN=60°,∴∠MCN=120°. 在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN, ∴△AEM≌△MCN(ASA), ∴AM=MN. (3)【解析】 若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=时,结论AM=MN仍然成立.
复制答案
考点分析:
相关试题推荐
某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.
(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?
(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?
查看答案
如图所示,甲乙两人准备了可以自由转动的转盘A、B,每个转盘被分成几个面积相等的扇形,并在每个扇形内标上数字.
(1)只转动A转盘,指针所指的数字是2的概率是多少?
(2)如果同时转动A、B两个转盘,将指针所指的数字相加,则和是非负数的概率是多少?并用树状图或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止).

manfen5.com 满分网 查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
manfen5.com 满分网
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.
(1)求弦BC的长;(2)求圆O的半径长.
(本题参考数据:sin67.4°=manfen5.com 满分网,cos67.4°=manfen5.com 满分网,tan67.4°=manfen5.com 满分网

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.