在直角△ABO中,利用正弦三角函数的定义求得∠OAB=60°,然后由旋转的角度、图中角与角间的和差关系知∠OAC=30°;最后由切线的性质推知△AOC是直角三角形,在直角三角形中由“30°角所对的直角边是斜边的一半”即可求得OC=2.
【解析】
∵OB⊥AB,OB=2,OA=4,
∴在直角△ABO中,sin∠OAB==,则∠OAB=60°;
又∵∠CAB=30°,
∴∠OAC=∠OAB-∠CAB=30°;
∵直线l2刚好与⊙O相切于点C,
∴∠ACO=90°,
∴在直角△AOC中,OC=OA=2(30°角所对的直角边是斜边的一半).
故答案是:2.