满分5 > 初中数学试题 >

如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,P...

如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.
(1)求证:FC为⊙O的切线;
(2)若△ADC是边长为a的等边三角形,求AB的长.(用含a的代数式表示)

manfen5.com 满分网
(1)连接OC.欲证FC为⊙O的切线,只需证明OC⊥FC即可; (2)连接BC.由等边三角形的性质、“同弧所对的圆周角相等”推知∠ABC=∠ADC=60°;然后在直角△ABC中利用正弦三角函数的定义来求AB线段的长度. (1)证明:连接OC. ∵OA=OC(⊙O的半径), ∴∠EAO=∠ECO(等边对等角). ∵PO⊥AB,∴∠EAO+∠AEO=90°(直角三角形中的两个锐角互余). ∵∠PEC=∠PCE(已知),∠PEC=∠AEO(对顶角相等) ∴∠AEO=∠PCE(等量代换), ∴∠PCO=∠ECO+∠PCE=∠EAO+∠AEO=90°.即OC⊥FC, ∵点C在⊙O上, ∴FC为⊙O的切线. (2)【解析】 连接BC. ∵AB是⊙O的直径,∴∠ACB=90°. ∵△ADC是边长为a的等边三角形, ∴∠ABC=∠D=60°,AC=a. 在Rt△ACB中,∵sin∠ABC= ∴AB==a.
复制答案
考点分析:
相关试题推荐
每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.
(1)水果商要把荔枝售价至少定为多少才不会亏本?
(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?
查看答案
manfen5.com 满分网如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线.
查看答案
在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.
(1)随机抽出一张卡片,求抽到数字“3”的概率;
(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)
(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为manfen5.com 满分网,问增加了多少张卡片?
查看答案
某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).
manfen5.com 满分网
(1)此次共调查了多少位学生?
(2)将表格填充完整;
步行骑自行车坐公共汽车其他
50__________________
(3)将条形统计图补充完整.
查看答案
如图,在直角坐标系中,线段AB的两个端点的坐标分别为A(-3,0),B(0,4).
(1)画出线段AB先向右平移3个单位,再向下平移4个单位后得到的线段CD,并写出A的对应点D的坐标,B的对应点C的坐标;
(2)连接AD、BC,判断所得图形的形状.(直接回答,不必证明)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.