阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x
1,y
1),Q(x
2,y
2)为端点的线段的中点坐标为(
,
).如图,在平面直角坐标系xOy中,双曲线y=
(x<0)和y=
(x>0)的图象关于y轴对称,直线y=
+
与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.
(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.
考点分析:
相关试题推荐
如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.
(1)求证:FC为⊙O的切线;
(2)若△ADC是边长为a的等边三角形,求AB的长.(用含a的代数式表示)
查看答案
每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.
(1)水果商要把荔枝售价至少定为多少才不会亏本?
(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?
查看答案
如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线.
查看答案
在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.
(1)随机抽出一张卡片,求抽到数字“3”的概率;
(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)
(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为
,问增加了多少张卡片?
查看答案
某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).
(1)此次共调查了多少位学生?
(2)将表格填充完整;
步行 | 骑自行车 | 坐公共汽车 | 其他 |
50 | ______ | ______ | ______ |
(3)将条形统计图补充完整.
查看答案