满分5 > 初中数学试题 >

某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价3...

某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
(1)等量关系为:甲商品总进价+乙商品总进价=2700,根据此关系列方程即可求解; (2)关系式为:甲商品件数×(20-15)+乙商品件数×(45-35)≥750,甲商品件数×(20-15)+乙商品件数×(45-35)≤760; (3)第一天的总价为200元,打折最低应该出270元,所以没有享受打折,第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出数量. 【解析】 (1)设购进甲、乙两种商品分别为x件,(100-x)件,根据题意得 15x+35(100-x)=2700 解得x=40 则100-40=60 答:甲种商品40件,乙种商品60件. (2)设该商场进甲种商品a件,则购进乙种商品(100-a)件,根据题意得 (20-15)a+(45-35)(100-a)≥750 (20-15)a+(45-35)(100-a)≤760 因此,不等式组的解集为48≤a≤50. 根据题意得值应是整数,所以a=48或a=49或a=50 该商场共有三种进货方案: 方案一:购进甲种商品48件,乙种商品52件; 方案二:购进甲种商品49件,乙种商品51件; 方案三:购进甲种商品50件,乙种商品50件. (3)根据题意得 第一天只购买甲种商品不享受优惠条件, ∴200÷20=10件 第二天只购买乙种商品有以下两种情况: 情况一:购买乙种商品打九折,324÷90%÷45=8件; 情况二:购买乙种商品打八折,324÷80%÷45=9件. 一共可购买甲、乙两种商品10+8=18件或10+9=19件.
复制答案
考点分析:
相关试题推荐
某兴趣小组用高为1.2米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为β,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为α.测得A,B之间的距离为4米,tanα=1.6,tanβ=1.2,试求建筑物CD的高度.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,以△ABC的边AB为直径的⊙O交边BC于点D,其中边AC与⊙O相切于点A,E为AC中点.
(1)求证:∠CAD=∠B;
(2)求证:DE是⊙O切线.
查看答案
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为manfen5.com 满分网.求n的值.
查看答案
如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1
(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图;
(3)直接写出x取何值时,抛物线位于x轴上方.

manfen5.com 满分网 查看答案
先化简manfen5.com 满分网,再选取一个你认为符合题意的x的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.