满分5 > 初中数学试题 >

如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与...

如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴交于点C,连接BC,AC.CD是⊙O'的切线,AD丄CD于点D,tan∠CAD=manfen5.com 满分网,抛物线y=ax2+bx+c过A,B,C三点.
(1)求证:∠CAD=∠CAB;
(2)①求抛物线的解析式;
②判断抛物线的顶点E是否在直线CD上,并说明理由;
(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形?若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.

manfen5.com 满分网
(1)连接O′C,由CD是⊙O的切线,可得O′C⊥CD,则可证得O′C∥AD,又由O′A=O′C,则可证得∠CAD=∠CAB; (2)①首先证得△CAO∽△BCO,根据相似三角形的对应边成比例,可得OC2=OA•OB,又由tan∠CAO=tan∠CAD=,则可求得CO,AO,BO的长,然后利用待定系数法即可求得二次函数的解析式; ②首先证得△FO′C∽△FAD,由相似三角形的对应边成比例,即可得到F的坐标,求得直线DC的解析式,然后将抛物线的顶点坐标代入检验即可求得答案; (3)根据题意分别从PA∥BC与PB∥AC去分析求解即可求得答案,小心漏解. (1)证明:连接O′C, ∵CD是⊙O′的切线, ∴O′C⊥CD, ∵AD⊥CD, ∴O′C∥AD, ∴∠O′CA=∠CAD, ∵O′A=O′C, ∴∠CAB=∠O′CA, ∴∠CAD=∠CAB; (2)【解析】 ①∵AB是⊙O′的直径, ∴∠ACB=90°, ∵OC⊥AB, ∴∠CAB=∠OCB, ∴△CAO∽△BCO, ∴, 即OC2=OA•OB, ∵tan∠CAO=tan∠CAD=, ∴AO=2CO, 又∵AB=10, ∴OC2=2CO(10-2CO), 解得CO1=4,CO2=0(舍去), ∴CO=4,AO=8,BO=2 ∵CO>0, ∴CO=4,AO=8,BO=2, ∴A(-8,0),B(2,0),C(0,4), ∵抛物线y=ax2+bx+c过点A,B,C三点, ∴c=4, 由题意得:, 解得:, ∴抛物线的解析式为:y=-x2-x+4; ②设直线DC交x轴于点F, ∴△AOC≌△ADC, ∴AD=AO=8, ∵O′C∥AD, ∴△FO′C∽△FAD, ∴, ∴O′F•AD=O′C•AF, ∴8(BF+5)=5(BF+10), ∴BF=,F(,0); 设直线DC的解析式为y=kx+m, 则, 解得:, ∴直线DC的解析式为y=-x+4, 由y=-x2-x+4=-(x+3)2+得顶点E的坐标为(-3,), 将E(-3,)代入直线DC的解析式y=-x+4中, 右边=-×(-3)+4==左边, ∴抛物线顶点E在直线CD上; (3)存在,P1(-10,-6),P2(10,-36). ①∵A(-8,0),C(0,4), ∴过A、C两点的直线解析式为y=x+4, 设过点B且与直线AC平行的直线解析式为:y=x+b,把B(2,0)代入得b=-1, ∴直线PB的解析式为y=x-1, ∴,解得,(舍去), ∴P1(-10,-6). ②求P2的方法应为过点A作与BC平行的直线, 可求出BC解析式,进而求出与之平行的直线的解析式, 与求P1同法,可求出x1=-8,y1=0(舍去);x2=10,y2=-36. ∴P2的坐标(10,-36).
复制答案
考点分析:
相关试题推荐
如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且BC=CD=2AD,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE.将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.
(1)求证:CD垂直平分EG.
(2)求证:直线BE平分线段CD.

manfen5.com 满分网 查看答案
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
查看答案
某兴趣小组用高为1.2米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为β,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为α.测得A,B之间的距离为4米,tanα=1.6,tanβ=1.2,试求建筑物CD的高度.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,以△ABC的边AB为直径的⊙O交边BC于点D,其中边AC与⊙O相切于点A,E为AC中点.
(1)求证:∠CAD=∠B;
(2)求证:DE是⊙O切线.
查看答案
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为manfen5.com 满分网.求n的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.