满分5 > 初中数学试题 >

如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作E...

如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=manfen5.com 满分网,CF=1,求⊙O的半径及EF的长.

manfen5.com 满分网
(1)连接OD,只要证明OD⊥EF即可. (2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值. (1)证明:连接OD; ∵AB是直径, ∴∠ACB=90°; ∵EF∥BC, ∴∠AFE=∠ACB=90°, ∵OA=OD, ∴∠OAD=∠ODA; 又∵AD平分∠BAC, ∴∠OAD=∠DAC, ∴∠ODA=∠DAC, ∴OD∥AF, ∴∠ODE=∠AFD=90°, 即OD⊥EF; 又∵EF过点D, ∴EF是⊙O的切线. (2)【解析】 连接BD,CD; ∵AB是直径, ∴∠ADB=90°, ∴∠ADB=∠AFD; ∵AD平分∠BAC, ∴∠OAD=∠DAC, ∴BD=CD; 设BD=CD=a; 又∵EF是⊙O的切线, ∴∠CDF=∠DAC, ∴∠CDF=∠OAD=∠DAC, ∴△CDF∽△ABD∽△ADF, ∴; ∵sin∠ABC==, ∴设AC=4x,AB=5x, ∴a2=5x, ∴在Rt△CDF中DF2=CD2-CF2=5x-1; 又∵, ∴5x-1=1×(1+4x), ∴x=2, ∴AB=5x=10,AC=4x=8; ∵EF∥BC, ∴△ABC∽△AEF, ∴,,, ∴在Rt△AEF中,.
复制答案
考点分析:
相关试题推荐
如图,已知直线y=-2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊙M与直线AB相切于点D,连接MD.
(1)求证:△ADM∽△AOB;
(2)如果⊙M的半径为2manfen5.com 满分网,请写出点M的坐标,并写出以(-manfen5.com 满分网manfen5.com 满分网)为顶点,且过点M的抛物线的解析式;
(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与△AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
请阅读下列材料:
(1)问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及manfen5.com 满分网的值.
(2)实验与探究:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
写出上面问题中线段PG与PC的位置关系______; 及manfen5.com 满分网=______

manfen5.com 满分网 查看答案
已知:以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,E为BC边上的中点,连接DE.
(1)如图,求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形,并在此条件下求sin∠CAE的值.

manfen5.com 满分网 查看答案
某班级要举办一场毕业联欢会,为了鼓励人人参与,规定每个同学都需要分别转动下列甲乙两个转盘(每个转盘都被均匀等分),若转盘停止后所指数字之和为7,则这个同学就要表演唱歌节目;若数字之和为9,则该同学就要表演讲故事节目;若数字之和为其他数,则分别对应表演其他节目.请用列表法(或树状图)分别求出这个同学表演唱歌节目的概率和讲故事节目的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.