如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.
考点分析:
相关试题推荐
四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.
查看答案
北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资公司为筹集善款,对其日本原产品进行大幅度销售.有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
若设分配给甲店A型产品x件,请你解决以下问题:
(1)这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式;
(2)若公司要求总利润不低于17560元,说明有多少种分配方案,并将各种方案写出来;哪种分配方案该公司可获得最大总利润,并求出这个最大总利润.
查看答案
如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
查看答案
如图,矩形ABCD中,AB=1,BC=2,BC在x轴上.反比例函数
的图象经过点A;一次函数y=kx-2的图象经过A、C两点,且与y轴交于点E.
(1)写出点E的坐标;
(2)求一次函数和反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数值大于反比例函数值的x的取值范围.
查看答案
一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:
(1)请补充完成下面的成绩统计分析表:
| 平均分 | 方差 | 中位数 | 合格率 | 优秀率 |
甲组 | 6.9 | 2.4 | | 91.7% | 16.7% |
乙组 | | 1.3 | | 83.3% | 8.3% |
(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.
查看答案