已知等边△ABC和Rt△DEF按如图所示的位置放置,点B,D重合,且点E、B(D)、C在同一条直线上.其中∠E=90°,∠EDF=30°,AB=DE=
,现将△DEF沿直线BC以每秒
个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t秒.
(1)试求出在平移过程中,点F落在△ABC的边上时的t值;
(2)试求出在平移过程中△ABC和Rt△DEF重叠部分的面积s与t的函数关系式;
(3)当D与C重合时,点H为直线DF上一动点,现将△DBH绕点D顺时针旋转60°得到△ACK,则是否存在点H使得△BHK的面积为
?若存在,试求出CH的值;若不存在,请说明理由.
考点分析:
相关试题推荐
未来一年,重庆将在打造“森林重庆”的过程中对“两翼一圈”中的“两翼”地区实施万元增收工程,为了提高农户收入,某县决定对在森林间的空地上种植中草药实行政府补贴,规定每种植一亩中草药一次性补贴农户若干元,经调查,种植亩数y(亩)与补贴数额x(元)之间成一次函数关系,且补贴与种植情况如下表:
补贴数额x(元) | 100 | 200 | … |
种植亩数y(亩) | 1600 | 2400 | … |
随着补贴数额x的不断增大,种植规模也不断增加,但每亩中草药的收益z(元)会相应降低,该县补贴政策实施前每亩中草药的收益为3000元,而每补贴10元,每亩中草药的收益会相应减少30元.
(1)分别求出政府补贴政策实施后,种植亩数y(亩)、每亩中草药的收益z(元)与政府补贴数额x(元)之间的函数关系式;
(2)要使全县种植这种中草药的总收益W(元)最大,政府应将每亩补贴数额x定为多少元?并求出总收益W的最大值和此时的种植亩数:(总收益=每亩收益×亩数)
(3)在取得最大收益的情况下,为了发展森林旅游,需占用其中不超过60亩的森林间空地修建一个森林公园.已知修建森林公园平均每亩的费用为650元,此外还要购置部分游乐设施,这项费用(元)等于空地面积(亩)的平方的25倍.这样,将空地用来修建森林公园比用来种植中草药时每亩的平均收益增加了2000元,在扣除所有修建费用后总收益为85000元,求修建的森林公元有多少亩?(精确到个位)(参考数据:
=1.414,
=1.732,
=2.236)
查看答案
已知如图,四边形ABCD为平行四边形,AD=a,AC为对角线,BM∥AC,过点D作 DE∥CM,交AC的延长线于F,交BM的延长线于E.
(1)求证:△ADF≌△BCM;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).
查看答案
为了了解全校 6000 名学生对学校设置的体操、篮球、足球、跑步、舞蹈等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进 行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).
(1)在这次问卷调查中,一共抽查了______名学生;
(2)补全频数分布直方图;
(3)估计该校 6000名学生中有______人最喜爱篮球活动;
(4)若被随机调查的学生中喜欢跑步的有3名男生,被随机调查的学生中喜欢舞蹈的有2名女生.现要从随机调查学生中喜欢跑步的同学和随机调查学生中喜欢舞蹈的同学中分别选出一位参加该学校组织的体育活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案
如图,直线AD:y
1=kx+b(k≠0)交坐标轴于点B和点C,交双曲线y
2=
(m≠0)于点A和点D,OB=OC=2,AB=BC.
(1)求直线和双曲线的解析式;
(2)请你连接AO和DO,并求出△AOD的面积.
查看答案
先化简,再求值:
,其中a=-3.
查看答案