满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从...

如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.
(1)求AC、BC的长;
(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;
(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.

manfen5.com 满分网
(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长; (2)分别从当点Q在边BC上运动时,过点Q作QH⊥AB于H与当点Q在边CA上运动时,过点Q作QH′⊥AB于H′去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式; (3)由PQ⊥AB,可得△APQ∽△ACB,由相似三角形的对应边成比例,求得△PBQ各边的长,根据相似三角形的判定,即可得以点B、P、Q为定点的三角形与△ABC不相似; (4)由x=5秒,求得AQ与AP的长,可得PQ是△ABC的中位线,即可得PQ是AC的垂直平分线,可得当M与P重合时△BCM得周长最小,则可求得最小周长的值. 【解析】 (1)设AC=4ycm,BC=3ycm, 在Rt△ABC中,AC2+BC2=AB2, 即:(4y)2+(3y)2=102, 解得:y=2, ∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H, ∵AP=xcm, ∴BP=(10-x)cm,BQ=2xcm, ∵△QHB∽△ACB, ∴, ∴QH=xcm, y=BP•QH=(10-x)•x=-x2+8x(0<x≤3), ②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′, ∵AP=xcm, ∴BP=(10-x)cm,AQ=(14-2x)cm, ∵△AQH′∽△ABC, ∴, 即:=, 解得:QH′=(14-2x)cm, ∴y=PB•QH′=(10-x)•(14-2x)=x2-x+42(3<x<7); ∴y与x的函数关系式为:y=; (3)∵AP=xcm,AQ=(14-2x)cm, ∵PQ⊥AB, ∴△APQ∽△ACB, ∴=, 即:=, 解得:x=,PQ=, ∴PB=10-x=cm, ∴==≠, ∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似; (4)存在. 理由:∵AQ=14-2x=14-10=4cm,AP=x=5cm, ∵AC=8cm,AB=10cm, ∴PQ是△ABC的中位线, ∴PQ∥BC, ∴PQ⊥AC, ∴PQ是AC的垂直平分线, ∴PC=AP=5cm, ∵AP=CP, ∴AP+BP=AB, ∴AM+BM=AB, ∴当点M与P重合时,△BCM的周长最小, ∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16cm. ∴△BCM的周长最小值为16cm.
复制答案
考点分析:
相关试题推荐
某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.
(1)求A、B两种纪念品的进价分别为多少?
(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?
查看答案
如图,已知Rt△ABC,∠ACB=90°,点O为斜边AB上一点,以点O为圆心、OA为半径的圆与BC相切于点D,与AB相交于点E,与AC相交于点F,连接OD.
(1)求证:AD平分∠BAC;
(2)若∠BAD=22.5°,⊙O的半径为4,求阴影部分的面积.(结果保留π)

manfen5.com 满分网 查看答案
某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
manfen5.com 满分网
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有______人,在扇形图中,表示“其他球类”的扇形的圆心角为______度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有______人.
查看答案
为了测量河对岸大树AB的高度,九年级(1)班数学兴趣小组设计了如图所示的测量方案,并得到如下数据:
(1)小明在大树底部点B的正对岸点C处,测得仰角∠ACB=30°;
(2)小红沿河岸测得DC=30米,∠BDC=45°.(点B、C、D在同一平面内,且CD⊥BC)
请你根据以上数据,求大树AB的高度.(结果保留一位小数)
(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)
manfen5.com 满分网
查看答案
(1)计算:manfen5.com 满分网
(2)先化简,再求值:manfen5.com 满分网+manfen5.com 满分网÷x,其中x=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.