如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.
考点分析:
相关试题推荐
产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销售每千克成品茶叶所获利润如下表:
类别 | 生产1千克成品茶叶所需鲜茶叶(千克) | 销售1千克成品茶叶所获利润(元) |
炒青 | 4 | 40 |
毛尖 | 5 | 120 |
(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”______千克,采鲜茶叶“毛尖”______千克.
(2)若某天该茶厂工人生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?
(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?
查看答案
已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
查看答案
如图,函数
(x>0,k是常数)的图象经过A(1,4),B(a,b),其中a>1,过点B作y轴的垂线,垂足为C,连接AB,AC.
(1)求k的值;
(2)若△ABC的面积为4,求点B的坐标.
查看答案
如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:
(1)这三个菱形的对称中心坐标分别为:①______、②______、③______,而面积都等于______.
(2)菱形②可以看做是由菱形①如何旋转得到的?答:______.
(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是______.
(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.
查看答案
有一农户用24m长的篱笆围成一面靠墙(墙长12m),大小相等且彼此相连的三个矩形鸡舍(如图).
(1)鸡场的面积能够达到32m
2吗?若能,给出你的方案;若不能,请说明理由;
(2)鸡场的面积能够达到80m
2吗?若能,给出你的方案;若不能,请说明理由.
查看答案