如图,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救,1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C点,再跳入海中;3号救生员沿岸边向前路300米到离B点最近的D点,再跳入海中,救生员在岸上跑的速度
都是6米/秒,在水中游泳的速度都是2米/秒,若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达营救地点B.(参考数据:
≈1.4,
≈1.7)
考点分析:
相关试题推荐
一只不透明的袋子中,装有3个白球和1个红球,这些球除颜色外都相同.
(1)小明认为,搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的,你同意他的说法吗?为什么?
(2)搅匀后从中摸出两个球,请通过列表或树状图求两球都是白球的概率.
(3)搅匀后从中摸出一个球,要使摸到红球的概率为
,应往袋中添加多少个红球?
查看答案
去年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.
查看答案
如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=
,求DC的长.
查看答案
国家教委规定“中小学生每天在校体育活动时间不低于1小时”.为此某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了的扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布直方图;
(3)2010年这个地区初中毕业生约为3.2万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
查看答案
如图,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF分别交AB、DC于点E、F,与CB、AD的延长线分别交于点G、H.
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.
查看答案