满分5 > 初中数学试题 >

红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40...

红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天)1361036
日销售量m(件)9490847624
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=manfen5.com 满分网t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-manfen5.com 满分网t+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式; (2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论; (3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围. 【解析】 (1)设一次函数为m=kt+b, 将和代入一次函数m=kt+b中, 有, ∴. ∴m=-2t+96. 经检验,其它点的坐标均适合以上解析式, 故所求函数解析式为m=-2t+96; (2)设前20天日销售利润为p1元,后20天日销售利润为p2元. 由p1=(-2t+96)(t+25-20) =(-2t+96)(t+5) =-t2+14t+480 =-(t-14)2+578, ∵1≤t≤20, ∴当t=14时,p1有最大值578(元). 由p2=(-2t+96)(-t+40-20) =(-2t+96)(-t+20) =t2-88t+1920 =(t-44)2-16. ∵21≤t≤40,此函数对称轴是t=44, ∴函数p2在21≤t≤40上,在对称轴左侧,随t的增大而减小. ∴当t=21时,p2有最大值为(21-44)2-16=529-16=513(元). ∵578>513,故第14天时,销售利润最大,为578元; (3)p1=(-2t+96)(t+25-20-a)=-t2+(14+2a)t+480-96a 对称轴为t==14+2a. ∵t取1≤t≤20之内的整数, ∴对称轴14+2a满足20≤14+2a,p1也是随整数t增加而增加. ∴3≤a<4.
复制答案
考点分析:
相关试题推荐
如图,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救,1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C点,再跳入海中;3号救生员沿岸边向前路300米到离B点最近的D点,再跳入海中,救生员在岸上跑的速度manfen5.com 满分网都是6米/秒,在水中游泳的速度都是2米/秒,若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达营救地点B.(参考数据:manfen5.com 满分网≈1.4,manfen5.com 满分网≈1.7)
查看答案
一只不透明的袋子中,装有3个白球和1个红球,这些球除颜色外都相同.
(1)小明认为,搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的,你同意他的说法吗?为什么?
(2)搅匀后从中摸出两个球,请通过列表或树状图求两球都是白球的概率.
(3)搅匀后从中摸出一个球,要使摸到红球的概率为manfen5.com 满分网,应往袋中添加多少个红球?
查看答案
去年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.
查看答案
如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=manfen5.com 满分网,求DC的长.

manfen5.com 满分网 查看答案
国家教委规定“中小学生每天在校体育活动时间不低于1小时”.为此某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了的扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布直方图;
(3)2010年这个地区初中毕业生约为3.2万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.