满分5 > 初中数学试题 >

已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OA...

已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.
(1)求过A、B、C三点的抛物线的解析式;
(2)若直线CD∥AB交抛物线于D点,求D点的坐标;
(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.

manfen5.com 满分网
(1)求得直线y=3x+3与坐标轴的两交点坐标,然后根据OB=OA即可求得点B的坐标,然后利用待定系数法求得经过A、B、C三点的抛物线的解析式即可; (2)首先利用待定系数法求得直线AB的解析式,然后根据CD∥AB得到两直线的k值相等,根据直线CD经过点C求得直线CD的解析式,然后求得直线CD和抛物线的交点坐标即可; (3)本问关键是求出△ABP的面积表达式.这个表达式是一个关于P点横坐标的二次函数,利用二次函数求极值的方法可以确定P点的坐标. 【解析】 (1)令y=3x+3=0得:x=-1, 故点C的坐标为(-1,0); 令x=0得:y=3x+3=3×0+3=3 故点A的坐标为(0,3); ∵△OAB是等腰直角三角形. ∴OB=OA=3, ∴点B的坐标为(3,0), 设过A、B、C三点的抛物线的解析式y=ax2+bx+c, 解得: ∴解析式为:y=-x2+2x+3; (2)设直线AB的解析式为y=kx+b, ∴ 解得: ∴直线AB的解析式为:y=-x+3 ∵线CD∥AB ∴设直线CD的解析式为y=-x+b ∵经过点C(-1,0), ∴-(-1)+b=0 解得:b=-1, ∴直线CD的解析式为:y=-x-1, 令-x-1=-x2+2x+3, 解得:x=-1,或x=4, 将x=4代入y=-x2+2x+3=-16+2×4+3=-5, ∴点D的坐标为:(4,-5); (3)存在.如图1所示,设P(x,y)是第一象限的抛物线上一点, 过点P作PN⊥x轴于点N,则ON=x,PN=y,BN=OB-ON=3-x. S△ABP=S梯形PNOA+S△PNB-S△AOB =(OA+PN)•ON+PN•BN-OA•OB =(3+y)•x+y•(3-x)-×3×3 =(x+y)-, ∵P(x,y)在抛物线上,∴y=-x2+2x+3,代入上式得: S△ABP=(x+y)-=-(x2-3x)=-(x-)2+, ∴当x=时,S△ABP取得最大值. 当x=时,y=-x2+2x+3=, ∴P(,). 所以,在第一象限的抛物线上,存在一点P,使得△ABP的面积最大; P点的坐标为(,).
复制答案
考点分析:
相关试题推荐
已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF.
(1)求证:BM⊥DF;
(2)若正方形ABCD的边长为2,求ME•MB.

manfen5.com 满分网 查看答案
青神竹编,工艺精美,受到人们的喜爱,有一客商到青神采购A、B两种竹编工艺品回去销售,其进价和回去的售价如右表所示.若该客商计划采购A、B两种竹编工艺品共60件,所需总费用为y元,其中A型工艺品x件.
型   号AB
进价(元/件)15080
售价(元/件)200100
(1)请写出y与x之间的函数关系式;(不求出x的取值范围).
(2)若该客商采购的B型工艺品不少于14件,且所获总利润要求不低于2500元,那么他有几种采购方案?写出每种采购方案,
并求出最大利润.
查看答案
有质地均匀的A、B、C、D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.
(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;
(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢.问这个游戏公平吗?为什么?如果不公平,请你设计一个公平的游戏规则.
查看答案
如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.
manfen5.com 满分网
查看答案
如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3,0),B(-1,-2),C(-2,2).
(1)请在图中画出△ABC绕B点顺时针旋转180°后的图形;
(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.