满分5 > 初中数学试题 >

如图,已知抛物线y=-x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-...

如图,已知抛物线y=-manfen5.com 满分网x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-manfen5.com 满分网x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

manfen5.com 满分网
(1)将A、C的坐标代入抛物线中即可求得待定系数的值. (2)根据抛物线的解析式可求得B点的坐标,即可求出OB,BC的长,在直角三角形BPH中,可根据BP的长和∠CBO三角函数求出PH,BH的长,进而可求出OH的长,也就求出了P点的坐标.Q点的坐标,可直接由直线CQ的解析式求得. (3)本题要分情况讨论: ①PQ=PB,此时BH=QH=BQ,在(2)中已经求得了BH的长,BQ的长可根据B、Q点的坐标求得,据此可求出t的值. ②PB=BQ,那么BQ=BP=5t,由此可求出t的值. ③PQ=BQ,已经求得了BH的长,可表示出QH的长,然后在直角三角形PQH中,用BQ的表达式表示出PQ,即可用勾股定理求出t的值. 【解析】 (1)已知抛物线过A(-1,0)、C(0,3),则有: , 解得, 因此b=,c=3; (2)令抛物线的解析式中y=0,则有-x2+x+3=0, 解得x=-1,x=4; ∴B(4,0),OB=4, 因此BC=5, 在直角三角形OBC中,OB=4,OC=3,BC=5, ∴sin∠CBO=,cos∠CBO=, 在直角三角形BHP中,BP=5t, 因此PH=3t,BH=4t; ∴OH=OB-BH=4-4t, 因此P(4-4t,3t). 令直线的解析式中y=0,则有0=-x+3,x=4t, ∴Q(4t,0). (3)存在t的值,有以下三种情况 ①如图1,当PQ=PB时, ∵PH⊥OB,则QH=HB, ∴4-4t-4t=4t, ∴t=, ②当PB=QB得4-4t=5t, ∴t=, ③当PQ=QB时,在Rt△PHQ中有QH2+PH2=PQ2, ∴(8t-4)2+(3t)2=(4-4t)2, ∴57t2-32t=0, ∴t=,t=0(舍去), 又∵0<t<1, ∴当或或时,△PQB为等腰三角形.
复制答案
考点分析:
相关试题推荐
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AD•AB.
(1)试说明:△ADC和△BDC都是等腰三角形;
(2)若AB=1,求AC的值.

manfen5.com 满分网 查看答案
如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
(1)求证:AC=CD;
(2)若AC=2,AO=manfen5.com 满分网,求OD的长度.

manfen5.com 满分网 查看答案
在同一直角坐标系中反比例函数manfen5.com 满分网的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.
查看答案
大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.
(1)第一批衬衣进货时的价格是多少?
(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?
(提示:利润=售价-成本,利润率=manfen5.com 满分网
查看答案
某班毕业晚会设计了即兴表演节目的摸球游戏,在一个不透明的盒子里装有4个分别标有数字1、2、3、4的乒乓球,这些球除数字外,其它完全相同.晚会上每位同学必须且只能做一次摸球游戏.游戏规则是:从盒子里随机摸出一个球,放回搅匀后,再摸出一个球,若第二次摸出的球上的数字小于第一次摸出的球上的数字,就要给大家即兴表演一个节目.
(1)参加晚会的同学性别比例如图,女生有18人,则参加晚会的学生共有______人;
(2)用列表法或树形图法求出晚会的某位同学即兴表演节目的概率;
(3)估计本次晚会上有多少名同学即兴表演节目?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.