在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为x.
①试用含x的代数式表示BF的长;
②试用含x的代数式表示△BEF的面积;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.
考点分析:
相关试题推荐
某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax
2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.
(1)求y的解析式;
(2)投产后,这个企业在第几年就能收回投资?
查看答案
“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游玩了多少小时?
(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?
(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油
升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)
查看答案
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.
查看答案
某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计表,根据统计图提供的信息解决下列问题:
(1)这种树苗成活的频率稳定在______,成活的概率估计值为______.
(2)该地区已经移植这种树苗5万棵.
①估计这种树苗成活______万棵;
②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?
查看答案
如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且
,求
的长.
查看答案