满分5 > 初中数学试题 >

已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),...

已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=______
(1)由四边形ODEF是等腰梯形,易得四边形OABC是平行四边形,由图2可得S△AOC=8,连接AC交x轴于R点,易得OR=4,由勾股定理可求得OA的值,即m的值; (2)由OB=2RO=8,AR⊥OB,即可求得B、C两点的坐标,易证得平行四边形OABC是菱形,则可得OF=3OA; (3)在OB上找一点N使ON=OG,连接NH,易证得△GOH≌△NOH,则可得GH+AH=AH+HN,根据垂线段最短可知:当AN是点A到OB的垂线段时,且H点是AN与OM的交点,继而求得答案. 【解析】 (1)如图1,∵四边形ODEF是等腰梯形, ∴OA=BC且OA∥BC, ∴四边形OABC是平行四边形, 由已知可得:S△AOC=8,连接AC交x轴于R点, 又∵A(4,2),C(n,-2), ∴S△AOC=S△AOR+S△ROC=0.5×RO×2+0.5×RO×2=2RO=8, ∴OR=4, ∴m=OA===2; 故答案为:2; (2)∵OB=2RO=8,CR=AR=2,AR⊥OB, ∴B(8,0),C(4,-2)且平行四边形OABC是菱形, ∴OF=3AO=3×2=6; (3)如图3,在OB上找一点N使ON=OG,连接NH, ∵OM平分∠AOB, ∴∠AOM=∠BOM, 在△GOH和△NOH中, , ∴△GOH≌△NOH(SAS), ∴GH=NH, ∴GH+AH=AH+HN=AN, 根据垂线段最短可知:当AN是点A到OB的垂线段时,且H点是AN与OM的交点, ∴GH+AH的最小值为2.
复制答案
考点分析:
相关试题推荐
(1)如图1:在△ABC中,AB=AC,当∠ABD=∠ACD=60°时,猜想AB与BD+CD数量关系,请直接写出结果______
(2)如图2:在△ABC中,AB=AC,当∠ABD=∠ACD=45°时,猜想AB与BD+CD数量关系并证明你的结论;
(3)如图3:在△ABC中,AB=AC,当∠ABD=∠ACD=β(20°≤β≤70°)时,直接写出AB与BD+CD数量关系(用含β的式子表示).
manfen5.com 满分网
查看答案
已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.
查看答案
阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是______
参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是______
查看答案
小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?

manfen5.com 满分网 查看答案
某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
manfen5.com 满分网
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目测试成绩/分
笔试929095
面试859580
图二是某同学根据上表绘制的一个不完全的条形图.
请你根据以上信息解答下列问题:
(1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.