如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.
考点分析:
相关试题推荐
某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图所示的二次函数图象(部分)刻画了该公司年初以来累计利润y(万元)与销售时间x(月)之间的函数关系(即x个月累计利润总和y与x之间的关系),根据图象提供的信息解答下列问题:
(1)该种软件上市第几个月后开始盈利;
(2)求累计利润总和y(万元)与时间x(月)之间的函数关系式;
(3)截止到几月末公司累计利润达到30万元;
(4)求出该函数图象与y轴的交点坐标,并说明该点的实际意义.
查看答案
如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数
的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
查看答案
阅读材料,解答问题.
例 用图象法解一元二次不等式:.x
2-2x-3>0
【解析】
设y=x
2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x
2-2x-3=0,解得x
1=-1,x
2=3.
∴由此得抛物线y=x
2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x
2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x
2-2x-3>0的解集是______;
(2)仿照上例,用图象法解一元二次不等式:x
2-1>0.
查看答案
如图,△AOB是边长为2的等边三角形,过点A的直线y=-
x+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线的解析式.
查看答案
(1)请在坐标系中画出二次函数y=-x
2+2x的大致图象;
(2)在同一个坐标系中画出y=-x
2+2x的图象向上平移两个单位后的图象;
(3)直接写出平移后的图象的解析式.
注:图中小正方形网格的边长为1.
查看答案