满分5 > 初中数学试题 >

已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D....

已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2manfen5.com 满分网,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)

manfen5.com 满分网
(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证; (2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:S△ODB-S扇形ODE=2-π”. 【解析】 (1)如图:连接OD, ∵OA=OD, ∴∠OAD=∠ADO, ∵∠BAC的角平分线AD交BC边于D, ∴∠CAD=∠OAD, ∴∠CAD=∠ADO, ∴AC∥OD, ∵∠C=90°, ∴∠ODB=90°, ∴OD⊥BC, 即直线BC与⊙O的切线, ∴直线BC与⊙O的位置关系为相切; (2)设⊙O的半径为r,则OB=6-r,又BD=2, 在Rt△OBD中, OD2+BD2=OB2, 即r2+(2)2=(6-r)2, 解得r=2,OB=6-r=4, ∴∠DOB=60°, ∴S扇形ODE==π, S△ODB=OD•BD=×2×2=2, ∴线段BD、BE与劣弧DE所围成的图形面积为:S△ODB-S扇形ODE=2-π.
复制答案
考点分析:
相关试题推荐
如图,为响应市人民政府“形象重于生命”的号召,在甲建筑物从A点到E点挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为45°,测得条幅底端E点的俯角为30°,求底部直接到达的甲、乙建筑物之间水平距离BC.

manfen5.com 满分网 查看答案
由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20 000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?
查看答案
在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果;
(2)求点M在直线y=x上的概率.
查看答案
如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2-x-2=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.