如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有______;
(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S
梯形ABCD=S
△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图,四边形ABCD中,AB与CD不平行,S
△ADC>S
△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.
考点分析:
相关试题推荐
甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
查看答案
如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①△AEM的周长=______cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
查看答案
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
(参考数据:
≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
查看答案
2010年4月14日,国内成品油价格迎来今年的首次提价,某市93号汽油的价格由6.25元/升涨到了6.52元/升,某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:
车主的态度 | 百分比 |
A.没有影响 | 4% |
B.影响不大,还可以接受 | P |
C.有影响,现在用车次数减少了 | 52% |
D.影响很大,需要放弃用车 | m |
E.不关心这个问题 | 10% |
(1)结合上述统计图表可得:p=______,m=______;
(2)根据以上信息,请补全条形统计图;
(3)2010年4月末,若该市有机动车的私家车车主约200000人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?
查看答案
如图,圆O经过平行四边形ABCD的三个顶点A、B、D,且圆心O在平行四边形ABCD的外部,tan∠DAB=
,D为弧AB的中点,⊙O的半径为5,求平行四边形的面积.
查看答案