满分5 > 初中数学试题 >

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,ta...

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网
(1)此题要证明DC=BC不能用全等三角形的性质,利用tan∠ADC=2求出BC然后再判定相等; (2)容易证明△DEC≌△BFC,得CE=CF,∠ECD=∠FCB,这样容易证明△ECF是等腰直角三角形; (3)由∠BEC=135°得∠BEF=90°,这样求sin∠BFE,然后利用已知条件就可以求出它的值了. (1)证明:过A作DC的垂线AM交DC于M,则AM=BC=2. 又tan∠ADC=2, ∴DM==1, 即DC=BC; (2)【解析】 等腰直角三角形. 证明:因为DE=BF,∠EDC=∠FBC,DC=BC, ∴△DEC≌△BFC, ∴CE=CF,∠ECD=∠FCB, ∴∠ECF=∠FCB+∠BCE=∠ECD+∠BCE=∠BCD=90°, 即△ECF是等腰直角三角形; (3)【解析】 设BE=k,则CE=CF=2k, ∴EF=2k, ∵∠BEC=135°,又∠CEF=45°, ∴∠BEF=90°, 所以BF==3k, 所以sin∠BFE==.
复制答案
考点分析:
相关试题推荐
已知关于x的方程 mx2+(3m+1)x+3=0.
(1)求证:不论m为任何实数,此方程总有实数根;
(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式;
(3)若点P(x1,y1)与Q(x1+n,y2)在(2)中抛物线上 (点P、Q不重合),且y1=y2,求代数式manfen5.com 满分网的值.
查看答案
如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)当BC=4,AC=3CE时,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,AD是弦,过圆上的点D作直线CD,且∠CDA=∠B.
(1)求证:CD是⊙O的切线;
(2)作AT⊥CD于点T,若AB=5AT,求sinB的值.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.
(1)求证:AE⊥DE;
(2)计算:AC•AF的值.

manfen5.com 满分网 查看答案
如图,已知正方形ABCD的边长为8,以AB为直径的⊙O交对角线AC于点F,点E在⊙O上(E,F分别在直径AB的两侧).
(1)求∠AEF的度数;
(2)若AE=7,求∠AFE的正弦值;
(3)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.