满分5 > 初中数学试题 >

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边A...

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=manfen5.com 满分网S△ABC;若不存在,请说明理由.
manfen5.com 满分网
(1)根据AD1=BD2就可以证明AD2=BD1,根据等角对等边证明AD2=D2F,D1E=D1B即可. (2)由于△AC1D1与△BC2D2重叠部分为不规则图形,所以将其面积转化为S△BC2D2-S△BED1-S△FC2P,再求各三角形的面积即可. (3)先假设存在x的值使得y=S△ABC,再求出△ABC的面积,然后根据(2)所求y=-x2+x(0≤x≤5)建立等量关系,解出x的值,即可证明存在x的值. 【解析】 (1)D1E=D2F. ∵C1D1∥C2D2, ∴∠C1=∠AFD2. 又∵∠ACB=90°,CD是斜边上的中线, ∴DC=DA=DB,即C1D1=C2D2=BD2=AD1 ∴∠C1=∠A, ∴∠AFD2=∠A ∴AD2=D2F. 同理:BD1=D1E. 又∵AD1=BD2, ∴AD2=BD1. ∴D1E=D2F. (2)∵在Rt△ABC中,AC=8,BC=6, ∴由勾股定理,得AB=10. 即AD1=BD2=C1D1=C2D2=5 又∵D2D1=x, ∴D1E=BD1=D2F=AD2=5-x. ∴C2F=C1E=x 在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高,为. 设△BED1的BD1边上的高为h, 由探究,得△BC2D2∽△BED1, ∴. ∴h=.S△BED1=×BD1×h=(5-x)2 又∵∠C1+∠C2=90°, ∴∠FPC2=90度. 又∵∠C2=∠B,sinB=,cosB=. ∴PC2=x,PF=x,S△FC2P=PC2×PF=x2 而y=S△BC2D2-S△BED1-S△FC2P=S△ABC-(5-x)2-x2 ∴y=-x2+x(0≤x≤5). (3)存在. 当y=S△ABC时,即-x2+x=6, 整理得3x2-20x+25=0. 解得,x1=,x2=5. 即当x=或x=5时,重叠部分的面积等于原△ABC面积的.
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.设PE=y;
(1)求y关于x的函数关系式;
(2)探究:当x为何值时,四边形PQBE为梯形?
(3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网 查看答案
已知关于x的方程 mx2+(3m+1)x+3=0.
(1)求证:不论m为任何实数,此方程总有实数根;
(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式;
(3)若点P(x1,y1)与Q(x1+n,y2)在(2)中抛物线上 (点P、Q不重合),且y1=y2,求代数式manfen5.com 满分网的值.
查看答案
如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)当BC=4,AC=3CE时,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,AD是弦,过圆上的点D作直线CD,且∠CDA=∠B.
(1)求证:CD是⊙O的切线;
(2)作AT⊥CD于点T,若AB=5AT,求sinB的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.