已知直线y=kx-6(k>0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)填空:点P的坐标为(______,______);
(2)当k=1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动,如图①.作BF⊥PC于点F,若以B、F、Q、P为顶点的四边形是平行四边形,求t的值.
(3)当k=
时,设以C为顶点的抛物线y=(x+m)
2+n与直线AB的另一交点为D(如图②),设△COD的OC边上的高为h,问:是否存在某个时刻t,使得h有最大值?若存在,试求出t的值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(
,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax
2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
查看答案
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC
1D
1和△BC
2D
2两个三角形(如图所示).将纸片△AC
1D
1沿直线D
2B(AB)方向平移(点A,D
1,D
2,B始终在同一直线上),当点D
1于点B重合时,停止平移.在平移过程中,C
1D
1与BC
2交于点E,AC
1与C
2D
2、BC
2分别交于点F、P.
(1)当△AC
1D
1平移到如图3所示的位置时,猜想图中的D
1E与D
2F的数量关系,并证明你的猜想;
(2)设平移距离D
2D
1为x,△AC
1D
1与△BC
2D
2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
S
△ABC;若不存在,请说明理由.
查看答案
如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.设PE=y;
(1)求y关于x的函数关系式;
(2)探究:当x为何值时,四边形PQBE为梯形?
(3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
查看答案
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.
查看答案
已知关于x的方程 mx
2+(3m+1)x+3=0.
(1)求证:不论m为任何实数,此方程总有实数根;
(2)若抛物线y=mx
2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式;
(3)若点P(x
1,y
1)与Q(x
1+n,y
2)在(2)中抛物线上 (点P、Q不重合),且y
1=y
2,求代数式
的值.
查看答案