首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.
【解析】
已知AD∥BC,∠ABC=90°,点E是BC边的中点,即AD=BE=CE=,
∴四边形ABED为平行四边形,
∴∠DEC=90°,∠A=90°,
又∠C=60°,
∴DE=CE•tan60°=×=3,
又∵△DEF是等边三角形,
∴DF=DE=AB=3,∠AGD=∠EDF=60°,∠ADG=30°
∴AG=AD•tan30°=×=1,
∴DG=2,FG=DF-DG=1,
BG=3-1=2,
∴AG=FG=1,∠AGD=∠FGB,BG=DG=2,
∴△AGD≌△BGF,
∴BF=AD=,
∴△BFG的周长为2+1+=3+,
故答案为:3+.