满分5 > 初中数学试题 >

●探究: (1)在图中,已知线段AB,CD,其中点分别为E,F. ①若A(-1,...

●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______
②若C(-2,2),D(-2,-1),则F点坐标为______
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数manfen5.com 满分网的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
manfen5.com 满分网
(1)正确作出两线段的中点,即可写出中点的坐标; (2)过点A,D,B三点分别作x轴的垂线,垂足分别为A',D',B',则AA'∥BB'∥CC',根据梯形中位线定理即可得证; ①解两函数解析式组成的方程组即可解得两点的坐标; ②根据A,B两点坐标,根据上面的结论可以求得AB的中点的坐标,此点也是OP的中点,根据前边的结论即可求解. 【解析】 探究(1)①(1,0);②(-2,);(2分) (2)过点A,D,B三点分别作x轴的垂线,垂足分别为A',D',B', 则AA'∥BB'∥DD'.(1分) ∵D为AB中点,由平行线分线段成比例定理得A'D'=D'B'. ∴OD'= 即D点的横坐标是.(1分) 同理可得D点的纵坐标是. ∴AB中点D的坐标为(,).(1分) 归纳:,.(1分) 运用①由题意得 解得或 ∴即交点的坐标为A(-1,-3),B(3,1).(2分) ②以AB为对角线时,由上面的结论知AB中点M的坐标为(1,-1). ∵平行四边形对角线互相平分, ∴OM=MP,即M为OP的中点. ∴P点坐标为(2,-2).(1分) 当OB为对角线时,PB=AO,PB∥AO, 同理可得:点P坐标分别为(4,4), 以OA为对角线时,PA=BO,PA∥BO, 可得:点P坐标分别为(-4,-4). ∴满足条件的点P有三个, 坐标分别是(2,-2),(4,4),(-4,-4).(1分)
复制答案
考点分析:
相关试题推荐
如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
manfen5.com 满分网
查看答案
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4manfen5.com 满分网,求垂线段OE的长.

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).
(1)画出△ABC,并求出AC所在直线的解析式.
(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.

manfen5.com 满分网 查看答案
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
manfen5.com 满分网
manfen5.com 满分网
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m=______
(2)该市支持选项B的司机大约有多少人?
(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?
查看答案
如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么顶点A62的坐标是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.